Dieses Lehrbuch bietet fortgeschrittenen Studierenden im Bachelorstudium eine konzise Einführung in das Gebiet der Variationsrechnung und eignet sich als Grundlage einer einsemestrigen Vorlesung.
Es beginnt mit einigen klassischen Variationsproblemen und Ergebnissen zu Minimalflächen. Der Schwerpunkt liegt jedoch auf den modernen Aspekten der Variationsrechnung. Das Hauptaugenmerk gilt dabei den Variationsintegralen für "vektorwertige Probleme", für die Minimierer mit der "direkten Methode der Variationsrechnung" gesucht werden. Als adäquate Funktionenräume hierfür werden die "Sobolevräume" ausführlich behandelt. Auch die Relaxation solcher Funktionale wird eingehend diskutiert. Schließlich wird eine Einführung in die Theorie der Gamma-Konvergenz bis hin zu aktuellen Anwendungen auf Mehrskalenprobleme gegeben.
Les mer
Dieses Lehrbuch bietet fortgeschrittenen Studierenden im Bachelorstudium eine konzise Einführung in das Gebiet der Variationsrechnung und eignet sich als Grundlage einer einsemestrigen Vorlesung.Es beginnt mit einigen klassischen Variationsproblemen und Ergebnissen zu Minimalflächen.
Les mer
Einleitung.- Klassische Theorie in einer Dimension.- Semiklassische Methoden.- Sobolev-Raume.- Vektorwertige Variationsprobleme.- Relaxation.- Konvergenz & Anwendungen.- Anhänge.
Dieses Lehrbuch bietet fortgeschrittenen Studierenden im Bachelorstudium eine konzise Einführung in das Gebiet der Variationsrechnung und eignet sich als Grundlage einer einsemestrigen Vorlesung.
Es beginnt mit einigen klassischen Variationsproblemen und Ergebnissen zu Minimalflächen. Der Schwerpunkt liegt jedoch auf den modernen Aspekten der Variationsrechnung. Das Hauptaugenmerk gilt dabei den Variationsintegralen für "vektorwertige Probleme", für die Minimierer mit der "direkten Methode der Variationsrechnung" gesucht werden. Als adäquate Funktionenräume hierfür werden die "Sobolevräume" ausführlich behandelt. Auch die Relaxation solcher Funktionale wird eingehend diskutiert. Schließlich wird eine Einführung in die Theorie der Gamma-Konvergenz bis hin zu aktuellen Anwendungen auf Mehrskalenprobleme gegeben.
Les mer
konzise und in sich geschlossene Einführung in die Variationsrechnung viele schon in Vorlesungen erprobte Übungsaufgaben weiter Bogen von den klassischen Anfängen bis zu modernen Entwicklungen
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783031591372
Publisert
2025-02-12
Utgiver
Vendor
Birkhauser Verlag AG
Høyde
240 mm
Bredde
168 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet
Biographical note
Bernd Schmidt ist seit 2011 Professor für Nichtlineare Analysis an der Universität Augsburg. Seine Forschungsschwerpunkte liegen in der Variationsrechnung und der mathematischen Kontinuumsmechanik.
Lisa Beck ist seit 2017 Professorin für Angewandte Analysis an der Universität Augsburg. Ihre Forschungsschwerpunkte liegen in der Variationsrechnung und der Theorie der elliptischen partiellen Differentialgleichungen.