Contributor List xvii Foreword 1 xxiii Foreword 2 xxv Acknowledgments xxvii List of Abbreviations xxix Part 1 Introduction and Basics 1 1 Introduction and Motivation 3 Patrick Marsch, Ămer Bulakçı, Olav Queseth and Mauro Boldi 1.1 5 th Generation Mobile and Wireless Communications 3 1.2 Timing of this Book and Global 5G Developments 5 1.3 Scope of the 5G System Described in this Book 8 1.4 Approach and Structure of this Book 10 References 12 2 Use Cases, Scenarios, and their Impact on the Mobile Network Ecosystem 15 Salah Eddine Elayoubi, MichaĆ Maternia, Jose F. Monserrat, Frederic Pujol, Panagiotis Spapis, Valerio Frascolla and Davide Sorbara 2.1 Introduction 15 2.2 Main Service Types Considered for 5G 16 2.3 5G Service Requirements 17 2.4 Use Cases Considered in NGMN and 5G PPP Projects 18 2.4.1 NGMN use Case Groups 20 2.4.2 Use Case Groups from 5G PPP Phase 1 Projects 23 2.4.3 Mapping of the 5GâPPP Use Case Families to the Vertical Use Cases 23 2.5 Typical Use Cases Considered in this Book 25 2.5.1 Dense Urban Information Society 25 2.5.2 Smart City 26 2.5.3 Connected Cars 26 2.5.4 Industry Automation 27 2.5.5 Broadcast/Multicast Communications 27 2.6 Envisioned Mobile Network Ecosystem Evolution 28 2.6.1 Current Mobile Network Ecosystem 28 2.6.2 Identification of New Players and their Roles in 5G 28 2.6.3 Evolution of the MNOâCentric Value Net 31 2.7 Summary and Outlook 33 References 34 3 Spectrum Usage and Management 35 Thomas Rosowski, Rauno Ruismaki, Luis M. Campoy, Giovanna DâAria, Du Ho Kang and Adrian Kliks 3.1 Introduction 35 3.2 Spectrum Authorization and Usage Scenarios 36 3.2.1 Spectrum Authorization and Usage Options for 5G 36 3.2.2 Requirements for Different 5G Usage Scenarios 38 3.3 Spectrum Bandwidth Demand Determination 39 3.3.1 Main Parameters for Spectrum Bandwidth Demand Estimations 39 3.3.2 State of the Art of Spectrum Demand Analysis 40 3.3.3 Spectrum Demand Analysis on Localized Scenarios 40 3.4 Frequency Bands for 5G 41 3.4.1 Bands Identified for IMT and Under Study in ITUâR 41 3.4.2 Further Potential Frequency Bands 43 3.4.3 5G Roadmaps 44 3.5 Spectrum Usage Aspects at High Frequencies 44 3.5.1 Propagation Challenges 45 3.5.2 Beamforming and 5G Mobile Coverage 45 3.5.3 Analysis of Deployment Scenarios 46 3.5.4 Coexistence of 5G Systems and Fixed Service Links 47 3.5.5 Coexistence under Licenseâexempt Operation 48 3.6 Spectrum Management 49 3.6.1 Evolutions in Dynamic Spectrum Management 49 3.6.2 Functional Spectrum Management Architecture 51 3.7 Summary and Outlook 53 References 54 4 Channel Modeling 57 Shangbin Wu, Sinh L. H. Nguyen and Raffaele DâErrico 4.1 Introduction 57 4.2 Core Features of New Channel Models 59 4.2.1 Path Loss 59 4.2.2 LOS Probability 61 4.2.3 O2I Penetration Loss 63 4.2.4 Fast Fading Generation 65 4.3 Additional Features of New Channel Models 65 4.3.1 Large Bandwidths and Large Antenna Arrays 65 4.3.2 Spatial Consistency 67 4.3.3 Blockage 68 4.3.4 Correlation Modeling for MultiâFrequency Simulations 69 4.3.5 Ground Reflection 70 4.3.6 Diffuse Scattering 72 4.3.7 D2D, Mobility, and V2V Channels 72 4.3.8 Oxygen Absorption, Timeâvarying Doppler Shift, MultiâFrequency Simulations, and UE Rotation 73 4.3.9 Mapâbased Hybrid Modeling Approach 74 4.4 Summary and Outlook 74 References 75 Part 2 5G System Architecture and E2E Enablers 79 5 E2E Architecture 81 Marco Gramaglia, Alexandros Kaloxylos, Panagiotis Spapis, Xavier Costa, Luis Miguel Contreras, Riccardo Trivisonno, Gerd Zimmermann, Antonio de la Oliva, Peter Rost and Patrick Marsch 5.1 Introduction 81 5.2 Enablers and Design Principles 82 5.2.1 Modularization 82 5.2.2 Network Slicing 82 5.2.3 Network Softwarization 84 5.2.4 MultiâTenancy 85 5.2.5 Mobile or MultiâAccess Edge Computing 87 5.3 E2E Architecture Overview 88 5.3.1 Physical Network Architecture 88 5.3.2 CN/RAN Split 90 5.3.3 QoS Architecture 91 5.3.4 Spectrum Sharing Architecture Overview 93 5.3.5 Transport Network 93 5.3.6 Control and Orchestration 95 5.4 Novel Concepts and Architectural Extensions 97 5.4.1 Architecture Modularization for the Core Network 97 5.4.2 RRC States 99 5.4.3 Accessâagnostic 5G Core Network 100 5.4.4 Roaming Support 101 5.4.5 Softwarized Network Control 102 5.4.6 Control/User Plane Split 103 5.5 Internetworking, Migration and Network Evolution 104 5.5.1 Interworking with Earlier 3GPP RATs 105 5.5.2 Interworking with Nonâ3GPP Access Networks 107 5.5.3 Network Evolution 111 5.6 Summary and Outlook 112 References 112 6 RAN Architecture 115 Patrick Marsch, Navid Nikaein, Mark Doll, Tao Chen and Emmanouil Pateromichelakis 6.1 Introduction 115 6.2 Related Work 116 6.2.1 3gpp 116 6.2.2 5g Ppp 117 6.3 RAN Architecture Requirements 118 6.4 Protocol Stack Architecture and Network Functions 119 6.4.1 Network Functions in a MultiâAIV and MultiâService Context 119 6.4.2 Possible Changes in the 5G Protocol Stack Compared to 4G 121 6.4.3 Possible Serviceâspecific Protocol Stack Optimization in 5G 124 6.4.4 NF Instantiation for MultiâService and MultiâTenancy Support 127 6.5 MultiâConnectivity 129 6.5.1 5G/(e)LTE MultiâConnectivity 129 6.5.2 5G/5G MultiâConnectivity 130 6.5.3 5G/WiâFi MultiâConnectivity 132 6.6 RAN Function Splits and Resulting Logical Network Entities 133 6.6.1 Control Plane/User Plane Split (Vertical Split) 134 6.6.2 Split into Centralized and Decentralized Units (Horizontal Split) 135 6.6.3 Most Relevant Overall Split Constellations 138 6.7 Deployment Scenarios and Related Physical RAN Architectures 141 6.7.1 Possible Physical Architectures Supporting the Deployment Scenarios 142 6.7.2 5G/(e)LTE and 5G MultiâAIV CoâDeployment 143 6.8 RAN Programmability and Control 144 6.9 Summary and Outlook 147 References 148 7 Transport Network Architecture 151 Anna Tzanakaki, Markos Anastasopoulos, Nathan Gomes, Philippos Assimakopoulos, Josep M. FĂ brega, Michela Svaluto Moreolo, Laia Nadal, JesĂșs GutiĂ©rrez, Vladica Sark, Eckhard Grass, Daniel CampsâMur, Antonio de la Oliva, Nuria Molner, Xavier Costa Perez, Josep Mangues, Ali Yaver, Paris Flegkas, Nikos Makris, Thanasis Korakis and Dimitra Simeonidou 7.1 Introduction 151 7.2 Architecture Definition 153 7.2.1 User Plane 153 7.2.2 Control Plane 155 7.3 Technology Options and Protocols 158 7.3.1 Wireless Technologies 158 7.3.2 Optical Transport 161 7.3.3 Ethernet 165 7.4 SelfâBackhauling 165 7.4.1 Comparison with Legacy LTE Relaying 166 7.4.2 Technical Aspects of SelfâBackhauling 167 7.5 Technology Integration and Interfacing 168 7.5.1 Framing, Protocol Adaptation, Flow Identification and Control 168 7.5.2 PBB/MPLS Framing to Carry FH/BH and its MultiâTenancy Characteristic 169 7.6 Transport Network Optimization and Performance Evaluation 170 7.6.1 Evaluation of Joint FH and BH Transport 170 7.6.2 Experimental Evaluation of Layerâ2 Functional Splits 173 7.6.3 Monitoring in the Ethernet Fronthaul 174 7.7 Summary 178 References 178 8 Network Slicing 181 Alexandros Kaloxylos, Christian Mannweiler, Gerd Zimmermann, Marco Di Girolamo, Patrick Marsch, Jakob Belschner, Anna Tzanakaki, Riccardo Trivisonno, Ămer Bulakçı, Panagiotis Spapis, Peter Rost, Paul Arnold and Navid Nikaein 8.1 Introduction 181 8.2 Slice Realization in the Different Network Domains 183 8.2.1 Realization of Slicing in the Core Network 183 8.2.2 Slice Support on the Transport Network 186 8.2.3 Impact of Slicing on the Radio Access Network 187 8.2.4 Slice Support Across Different Administrative Domains 191 8.2.5 E2E Slicing: A Detailed Example 193 8.3 Operational Aspects 196 8.3.1 Slice Selection 196 8.3.2 Connecting to Multiple Slices 197 8.3.3 Slice Isolation 197 8.3.4 Radio Resource Management Among Slices 198 8.3.5 Managing Network Slices 199 8.4 Summary and Outlook 202 References 204 9 Security 207 Carolina CanalesâValenzuela, Madalina Baltatu, Luciana Costa, Kai Habel, Volker Jungnickel, Geza Koczian, Felix Ngobigha, Michael C. Parker, Muhammad Shuaib Siddiqui, Eleni Trouva and Stuart D. Walker 9.1 Introduction 207 9.2 Threat Landscape 208 9.3 5G Security Requirements 209 9.3.1 Adoption of Softwareâdefined Networking and Virtualization Technologies 209 9.3.2 Security Automation and Management 210 9.3.3 Slice Isolation and Protection Against Side Channel Attacks in MultiâTenant Environments 211 9.3.4 Monitoring and Analytics for Security Purposes 211 9.4 5G Security Architecture 211 9.4.1 Overall Description 211 9.4.2 Infrastructure Security 213 9.4.3 Physical Layer Security 216 9.4.4 5G RAN Security 217 9.4.5 Serviceâlevel Security 221 9.4.6 A Control and Management Framework for Automated Security 221 9.5 Summary 224 References 224 10 Network Management and Orchestration 227 Luis M. Contreras, VĂctor LĂłpez, Ricard Vilalta, Ramon Casellas, RaĂșl Muñoz, Wei Jiang, Hans Schotten, Jose AlcarazâCalero, Qi Wang, BalĂĄzs Sonkoly and LĂĄszlĂł Toka 10.1 Introduction 227 10.2 Network Management and Orchestration Through SDN and NFV 228 10.2.1 Software-Defined Networking 229 10.2.2 Network Function Virtualization 232 10.3 Enablers of Management and Orchestration 233 10.3.1 Open and Standardized Interfaces 234 10.3.2 Modeling of Services and Devices 237 10.4 Orchestration in MultiâDomain and MultiâTechnology Scenarios 238 10.4.1 MultiâDomain Scenarios 238 10.4.2 MultiâTechnology Scenarios 244 10.5 SoftwareâDefined Networking for 5G 245 10.5.1 Xhaul SoftwareâDefined Networking 245 10.5.2 Core Transport Networks 250 10.6 Network Function Virtualization in 5G Environments 251 10.7 Autonomic Network Management in 5G 252 10.7.1 Motivation 252 10.7.2 Architecture of Autonomic Management 254 10.7.3 Autonomic Control Loop 255 10.7.4 Enabling Algorithms 257 10.8 Summary 258 References 259 Part 3 5G Functional Design 263 11 Antenna, PHY and MAC Design 265 Frank Schaich, Catherine Douillard, Charbel Abdel Nour, Malte Schellmann, Tommy Svensson, Hao Lin, Honglei Miao, Hua Wang, Jian Luo, Milos Tesanovic, Nuno Pratas, Sandra Roger and Thorsten Wild 11.1 Introduction 265 11.2 PHY and MAC Design Criteria and Harmonization 267 11.3 Waveform Design 269 11.3.1 Advanced Features and Design Aspects of MultiâCarrier Waveforms 272 11.3.2 Comparison of Waveform Candidates for 5G 276 11.3.3 Coâexistence Aspects 280 11.3.4 General Framework for MultiâCarrier Waveform Generation 281 11.4 Coding Approaches and HARQ 283 11.4.1 Coding Requirements 283 11.4.2 Coding Candidates 284 11.4.3 General Summary and Comparison 289 11.4.4 Hybrid Automatic Repeat reQuest (HARQ) 291 11.5 Antenna Design, Analog, Digital and Hybrid Beamforming 293 11.5.1 MultiâAntenna Scheme Overview of 3GPP NR 294 11.5.2 Hybrid Beamforming 297 11.5.3 Digital Beamforming with Finite DACs 298 11.5.4 Massive MultipleâInput Massive MultipleâOutput 298 11.6 PHY/MAC Design for MultiâService Support 300 11.6.1 Fundamental Frame Design Considerations 300 11.6.2 Initial Access 302 11.6.3 Control Channel Design 303 11.6.4 Data Channel Design 304 11.7 Summary and Outlook 310 References 311 12 Traffic Steering and Resource Management 315 Ămer Bulakçı, Klaus Pedersen, David Gutierrez Estevez, Athul Prasad, Fernando Sanchez Moya, Jan Christoffersson, Yang Yang, Emmanouil Pateromichelakis, Paul Arnold, Tommy Svensson, Tao Chen, Honglei Miao, Martin Kurras, Samer Bazzi, Stavroula Vassaki, Evangelos Kosmatos, Kwang Taik Kim, Giorgio Calochira, Jakob Belschner, Sergio Barberis and Taylan Ćahin 12.1 Motivation and Role of Resource Management in 5G 315 12.2 Service Classification: A First Step Towards Efficient RM 317 12.2.1 QoS Mechanisms in 5G Networks 317 12.2.2 A Survey of Traffic Classification Mechanisms 318 12.2.3 MLâbased Service Classification Approach 319 12.2.4 Numerical Evaluation of Service Classification Schemes 320 12.3 Dynamic MultiâService Scheduling 321 12.3.1 Scheduling Formats and Flexible Timing 323 12.3.2 Benefits of Scheduling with Variable TTI Size 324 12.3.3 Punctured/Preemptive Scheduling 326 12.4 FastâTimescale Dynamic Traffic Steering 328 12.4.1 Fast Traffic Steering 328 12.4.2 Proactive Traffic Steering in Heterogeneous Networks with mmWave Bands 330 12.4.3 MultiâNode Connectivity 332 12.5 Networkâbased Interference Management 335 12.5.1 Interference Mitigation in Dynamic Radio Topology 336 12.5.2 Interference Management Based on Advanced Transceiver Designs 340 12.5.3 Interference Mitigation in Massive MIMO Dynamic TDD Systems 342 12.5.4 MultiâCell Pilot Coordination for UL Pilot Interference Mitigation 345 12.5.5 Interference Mitigation in mmWave Deployments 347 12.6 MultiâSlice RM 350 12.7 Energyâefficient RAN Moderation 354 12.7.1 Coordinated Sleep Cycles for Energy Efficiency 354 12.7.2 Cell On/Off Coordination 356 12.8 UE Context Management 359 12.9 Summary and Outlook 360 References 361 13 Initial Access, RRC and Mobility 367 MĂ„rten Ericson, Panagiotis Spapis, Mikko SĂ€ily, Klaus Pedersen, Yinan Qi, Nicolas Barati, Tommy Svensson, Mehrdad Shariat, Marco Giordani, Marco Mezzavilla, Mark Doll, Honglei Miao and Chan Zhou 13.1 Introduction 367 13.2 Initial Access 369 13.2.1 Initial Access in General 369 13.2.2 System Information and 5G RAN Lean Design 370 13.2.3 Configurable Downlink Synchronization for Unified Beam Operation 372 13.2.4 Digital Beamforming in the Initial Access Phase 374 13.2.5 Beam Finding for Low-Latency Initial Access 376 13.2.6 Optimized RACH Access Schemes 378 13.3 States and State Handling 381 13.3.1 Fundamentals of the RRC State Machine for 5G 381 13.3.2 Mobility Procedures for Connected Inactive 383 13.3.3 Configurability of the Connected Inactive State 385 13.3.4 Paging in Connected Inactive 387 13.3.5 Small Data Transmission in RRC Connected State 390 13.4 Mobility 391 13.4.1 Introduction 391 13.4.2 Mobility Management via ULâbased Measurements 391 13.4.3 Cluster-based Beam Mobility Framework 394 13.4.4 Partly UEâautonomous Cell Management for MultiâConnectivity Cases 397 13.4.5 Enhanced Synchronous Handover without Random Access 398 13.4.6 RAN Design to Support CSI Acquisition for HighâMobility Users 401 13.5 Summary and Outlook 404 References 404 14 D2D and V2X Communications 409 Shubhranshu Singh, Ji Lianghai, Daniel Calabuig, David GarciaâRoger, Nurul H. Mahmood, Nuno Pratas, Tomasz Mach and Maria Carmela De Gennaro 14.1 Introduction 409 14.1.1 Application Scenarios 410 14.1.2 Technical Challenges from 5G Design Perspective 411 14.2 Technical Status and Standardization Overview 412 14.2.1 D2D: 3GPP Standardization Overview 412 14.2.2 V2X: 3GPP Standardization Overview 413 14.2.3 ETSI ITS Communications Architecture and Protocol Stack 413 14.2.4 IEEE Wireless Access in Vehicular Environments â WAVE 416 14.2.5 Other Industry Organizations 417 14.3 5G Air Interface Candidate Waveforms for Sidelink Support 418 14.3.1 Synchronization Problems and Possible Solutions 418 14.3.2 Enhancements for V2X 421 14.4 Device Discovery on the Sidelink 424 14.4.1 Proximity Discovery Architecture 424 14.4.2 Networkâsupported Proximity Discovery 424 14.4.3 OutâofâCoverage Proximity Discovery 425 14.4.4 Performance Evaluation of Device Discovery with FullâDuplex Nodes 426 14.5 Sidelink Mobility Management 427 14.5.1 General Considerations 427 14.5.2 D2D Mobility Management Schemes 429 14.6 V2X Communications for Road Safety Applications 430 14.6.1 General System Design Aspects 430 14.6.2 Impact of the Existence of Several Message Ranges on the System Design 432 14.6.3 Distributed versus Centralized Radio Resource Management 434 14.7 Industrial Implementation of V2X in the Automotive Domain 434 14.7.1 Placement of the V2X Platform within the Vehicle 435 14.7.2 Test Deployments and Outcomes 436 14.8 Further Evolution of D2D Communications 438 14.8.1 Exploitation of D2D to Enhance mMTC Services 438 14.8.2 Radio Link Enabler in Reuse Mode to Improve System Capacity 440 14.8.3 Radio Resource Management for D2D 441 14.8.4 Cooperative D2D Communication 444 14.9 Summary and Outlook 445 References 446 Part 4 Performance Evaluation and Implementation 451 15 Performance, Energy Efficiency and TechnoâEconomic Assessment 453 MichaĆ Maternia, Jose F. Monserrat, David MartĂnâSacristĂĄn, Yong Wu, Changqing Yang, Mauro Boldi, Yu Bao, Frederic Pujol, Giuseppe Piro, Gennaro Boggia, Alessandro Grassi, HansâOtto Scheck, IoannisâProdromos Belikaidis, Andreas Georgakopoulos, Katerina Demesticha and Panagiotis Demestichas 15.1 Introduction 453 15.2 Performance Evaluation Framework 454 15.2.1 IMTâA Evaluation Framework 454 15.2.2 IMTâ2020 Evaluation Process and Framework 455 15.2.3 5G PPP Evaluation Framework 456 15.3 Network Energy Efficiency 467 15.3.1 Why is Network Energy Efficiency Important? 467 15.3.2 Energy Efficiency Metrics and Models 468 15.3.3 Energy Efficiency Metrics and Product Assessment in the Laboratory 471 15.3.4 Numeric Network Energy Efficiency Evaluation 471 15.4 TechnoâEconomic Evaluation and Analysis of 5G Deployment 473 15.4.1 Economic Assessment of New Technology Deployment in Mobile Networks 474 15.4.2 Methodology of 5G Deployment Assessment 475 15.4.3 TechnoâEconomic Evaluation and Deployment Analysis Results 477 15.5 Summary 478 References 479 16 Implementation of Hardware and Software Platforms 483 ChiaâYu Chang, Dario Sabella, David GarcĂaâRoger, Dieter Ferling, Fredrik Tillman, Gian Michele DellâAera, Leonardo Gomes Baltar, Michael FĂ€rber, Miquel PayarĂł, Navid Nikaein, Pablo Serrano, Raymond Knopp, Sandra Roger, Sylvie Mayrargue and Tapio Rautio 16.1 Introduction 483 16.2 Solutions for Radio Frontend Implementation 484 16.2.1 Requirements on 5G Radio Frontends 484 16.2.2 MultiâBand Transceivers 485 16.2.3 MultiâAntenna Transceivers 487 16.2.4 FullâDuplex Transceivers 490 16.2.5 Techniques for the Enhancement of Power Amplifier Efficiency 491 16.3 Solutions for Digital HW Implementation 492 16.3.1 Requirements on 5G Digital HW 492 16.3.2 Complexity Analysis of the Individual Implementation of New Waveforms 493 16.3.3 Complexity Analysis of a MultiâWaveform Harmonized Implementation 496 16.3.4 Channel Decoder Implementations for 5G 501 16.4 Flexible HW/SW Partitioning Solutions for 5G 502 16.4.1 Architecture for Supporting MAC/PHY CrossâLayer Reconfiguration 502 16.4.2 Cognitive Dynamic HW/SW Partitioning Algorithm 503 16.5 Implementation of SW Platforms 504 16.5.1 Functional Modules 504 16.5.2 SW Platform Solutions for Prototyping 5G Systems 505 16.6 Implementation Example: vRAN/CâRAN Architecture in OAI 506 16.6.1 Overall Architecture 507 16.6.2 Deployment Topology 507 16.6.3 Performance Results 509 16.6.4 Deployment Environment 514 16.7 Summary 516 References 517 17 Standardization, Trials, and Early Commercialization 521 Terje Tjelta, Olav Queseth, Didier Bourse, Yves Bellego, Raffaele de Peppe, Hisham Elshaer, Frederic Pujol, Chris Pearson, Chen Xiaobei, Takehiro Nakamura, Akira Matsunaga, Hitoshi Yoshino, Yukihiko Okumura, Dong Ku Kim, Jinhyo Park and Hong Beom Jeon 17.1 Introduction 521 17.2 Standardization Roadmap 522 17.2.1 3GPP New Radio 522 17.2.2 Imtâ 2020 524 17.2.3 3GPP eLTE 524 17.3 Early Deployments 526 17.3.1 Early Deployment in Europe 526 17.3.2 Early Deployment in Americas 531 17.3.3 Early Deployment in Asia 533 17.4 Summary 547 References 547 Index 551
Les mer