Preface xv Acknowledgement xix 1 Overview of Hybrid Micromachining and Microfabrication Techniques 1 Sandip Kunar, Akhilesh Kumar Singh, Devarapalli Raviteja, Golam Kibria, Prasenjit Chatterjee, Asma Perveen and Norfazillah Talib 1.1 Introduction 2 1.2 Classification of Hybrid Micromachining and Microfabrication Techniques 3 1.2.1 Compound Processes 4 1.2.2 Methods Aided by Various Energy Sources 6 1.2.3 Processing Using a Hybrid Tool 9 1.3 Challenges in Hybrid Micromachining 9 1.4 Conclusions 10 1.5 Future Research Opportunities 11 References 11 2 A Review on Experimental Studies in Electrochemical Discharge Machining 17 Pravin Pawar, Amaresh Kumar and Raj Ballav 2.1 Introduction 17 2.2 Historical Background 18 2.3 Principle of Electrochemical Discharge Machining Process 20 2.4 Basic Mechanism of Electrochemical Discharge Machining Process 20 2.5 Application of ECDM Process 23 2.6 Literature Review on ECDM 23 2.6.1 Literature Review on Theoretical Modeling 23 2.6.2 Literature Review on Internal Behavioral Studies 27 2.6.3 Literature Review on Design of ECDM 30 2.6.4 Literature Review on Workpiece Materials Used in ECDM 33 2.6.5 Literature Review on Tooling Materials and Its Design in ECDM 36 2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM 39 2.6.7 Literature Review on Optimization Techniques Used in ECDM 42 2.7 Conclusion 87 Acknowledgments 87 References 87 3 Laser-Assisted Micromilling 101 Asma Perveen, Sandip Kunar, Golam Kibria and Prasenjit Chatterjee 3.1 Introduction 102 3.2 Laser-Assisted Micromilling 103 3.2.1 Laser-Assisted Micromilling of Steel Alloys 103 3.2.2 Laser-Assisted Micromilling of Titanium Alloys 105 3.2.3 Laser-Assisted Micromilling of Ni Alloys 108 3.2.4 Laser-Assisted Micromilling of Cementite Carbide 109 3.2.5 Laser-Assisted Micromilling of Ceramics 110 3.3 Conclusion 111 References 112 4 Ultrasonic-Assisted Electrochemical Micromachining 115 Sandip Kunar, Itha Veeranjaneyulu, S. Rama Sree, Asma Perveen, Norfazillah Talib, Sreenivasa Reddy Medapati and K.V.S.R. Murthy 4.1 Introduction 116 4.2 Ultrasonic Effect 117 4.2.1 Pumping Effect 117 4.2.2 Cavitation Effect 117 4.3 Experimental Procedure 117 4.4 Results and Discussion 118 4.4.1 Effect of Traditional Electrochemical Micromachining 118 4.4.2 Effect of Electrolyte Jet During Micropatterning 119 4.4.3 Effect of Ultrasonic Assistance During Micropatterning 121 4.4.4 Effect of Ultrasonic Amplitude During Micropatterning 121 4.4.5 Influence of Working Voltage During Micropatterning 121 4.4.6 Influence of Pulse-Off Time During Micropatterning 121 4.4.7 Influence of Electrode Feed Rate During Micropatterning 122 4.5 Conclusions 122 References 123 5 Micro-Electrochemical Piercing on SS 204 125 Manas Barman, Premangshu Mukhopadhyay and Goutam Kumar Bose 5.1 Introduction 125 5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes 126 5.3 Results and Discussions 127 5.4 Conclusions 134 References 134 6 Laser-Assisted Electrochemical Discharge Micromachining 137 Sandip Kunar, Kagithapu Rajendra, V. V. D. Praveen Kalepu, Prasenjit Chatterjee, Asma Perveen, Norfazillah Talib and K.V.S.R. Murthy 6.1 Introduction 138 6.2 Experimental Procedure 140 6.3 Results and Discussion 143 6.3.1 ECDM Pre-Process 143 6.3.2 Laser Pre-Process 145 6.4 Conclusions 147 References 147 7 Laser-Assisted Hybrid Micromachining Processes and Its Applications 151 Ravindra Nath Yadav 7.1 Introduction 152 7.2 Laser-Assisted Hybrid Micromachining 156 7.3 Laser-Assisted Traditional-HMMPs 157 7.3.1 Laser-Assisted Microturning Process 157 7.3.2 Laser-Assisted Microdrilling Process 160 7.3.3 Laser-Assisted Micromilling Process 161 7.3.4 Laser-Assisted Microgrinding Process 162 7.4 Laser-Assisted Nontraditional HMMPs 163 7.4.1 Laser-Assisted Electrodischarge Micromachining 164 7.4.2 Laser-Assisted Electrochemical Micromachining 166 7.4.3 Laser-Assisted Electrochemical Spark Micromachining 167 7.4.4 Laser-Assisted Water Jet Micromachining 168 7.5 Capabilities and Shortfalls of LA-HMMPs 171 7.6 Conclusion 174 Acknowledgment 174 References 174 8 Hybrid Laser-Assisted Jet Electrochemical Micromachining Process 179 Sivakumar M., J. Jerald, Shriram S., Jayanth S. and N. S. Balaji 8.1 Introduction 180 8.2 Overview of Electrochemical Machining 181 8.3 Importance of Electrochemical Micromachining 182 8.4 Fundamentals of Electrochemical Micromachining 182 8.4.1 Electrochemistry of Electrochemical Micromachining 183 8.4.2 Mechanism of Material Removal 184 8.5 Major Factors of EMM 184 8.5.1 Nature of Power Supply 184 8.5.2 Interelectrode Gap (IEG) 185 8.5.3 Temperature, Concentration, and Electrolyte Flow 185 8.6 Jet Electrochemical Micromachining 186 8.7 Laser as Assisting Process 188 8.8 Laser-Assisted Jet Electrochemical Micromachining (la-jecm) 189 8.8.1 Working Principles of LAJECM 189 8.8.2 Mechanism of Material Removal 191 8.8.3 Materials 193 8.8.4 Theoretical and Experimental Method for Process Energy Distribution 194 8.8.5 LAJECM Process Temperature 196 8.8.6 Material Removal Rate and Taper Angle 196 8.8.7 LAJECM and JECM Comparison 197 8.8.8 Machining Precision 198 8.8.8.1 Geometry Precision 198 8.8.8.2 Profile Surface Roughness 200 8.9 Applications of LAJECM 200 References 202 9 Ultrasonic Vibration-Assisted Microwire Electrochemical Discharge Machining 205 Sandip Kunar, Kagithapu Rajendra, Devarapalli Raviteja, Norfazillah Talib, S. Rama Sree and M.S. Reddy 9.1 Introduction 206 9.2 Experimental Setup 207 9.3 Results and Discussion 208 9.3.1 Influence of Ultrasonic Amplitude on Micro Slit Width 209 9.3.2 Influence of Voltage on Micro Slit Width 211 9.3.3 Effect of Duty Ratio on Micro Slit Width 212 9.3.4 Influence of Frequency on Slit Width 213 9.3.5 Analysis of Micro Slits 214 9.4 Conclusions 215 References 216 10 Study of Soda-Lime Glass Machinability by Gunmetal Tool in Electrochemical Discharge Machining and Process Parameters Optimization Using Grey Relational Analysis 219 Pravin Pawar, Amaresh Kumar and Raj Ballav 10.1 Introduction 220 10.2 Experimental Conditions 221 10.3 Analysis of Average MRR of Workpiece (Soda-Lime Glass) Through Gunmetal Electrode 223 10.3.1 ANOVA for Average MRR 224 10.3.2 Influence of Input Factors on Average MRR 228 10.4 Analysis of Average Depth of Machined Hole on Soda-Lime Glass Through Gunmetal Electrode 228 10.4.1 ANOVA for Average Machined Depth 229 10.4.2 Influence of Input Factors on Average Machined Depth 230 10.5 Analysis of Average Diameter of Hole of Soda-Lime Glass Through Gunmetal Electrode 231 10.5.1 ANOVA for Average Hole Diameter 231 10.5.2 Influence of Input Factors on Average Hole Diameter 231 10.6 Grey Relational Analysis Optimization of Soda-Lime Glass Results by Gunmetal Electrode 232 10.6.1 Methodology of Grey Relational Analysis 233 10.6.2 Data Pre-Processing 233 10.6.3 Grey Relational Generating 233 10.6.4 Deviation Sequence 234 10.6.5 Grey Relational Coefficient 235 10.6.6 Grey Relational Grade 235 10.7 Conclusion 238 Acknowledgments 238 References 238 11 Micro Turbine Generator Combined with Silicon Structure and Ceramic Magnetic Circuit 243 Minami Kaneko and Fumio Uchikoba 11.1 Introduction 244 11.2 Concept 246 11.3 Fabrication Technology 247 11.3.1 Microfabrication Technology of Silicon Material 247 11.3.2 Multilayer Ceramic Technology 248 11.4 Designs and Experiments 249 11.4.1 Designs of Turbine and Magnetic Circuit for Single-Phase Type 249 11.4.2 Designs of Turbine and Magnetic Circuit for Three-Phase Type 252 11.4.3 Rotational Experiment and Rotor Blade Design 253 11.4.4 Low Boiling Point Fluid and Experiment 255 11.5 Results and Discussion 255 11.5.1 Fabricated Evaluation 255 11.5.2 Rotational Result 258 11.5.3 Comparison of Rotor Shape and Rotational Motion 262 11.5.4 Phase Change 264 11.6 Conclusions 267 Acknowledgment 268 References 268 12 A Review on Hybrid Micromachining Process and Technologies 271 Akhilesh Kumar Singh, Sandip Kunar, M. Zubairuddin, Pramod Kumar, Marxim Rahula Bharathi B., P.V. Elumalai, M. Murugan and Yarrapragada K.S.S. Rao 12.1 Introduction 272 12.2 Characteristics of Hybrid-Micromachining 272 12.3 Bibliometric Survey of Micromachining to Hybrid-Micromachining 273 12.4 Material Removal in Microsizes 275 12.5 Nontraditional Hybrid-Micromachining Technologies 276 12.6 Classification of Techniques Used for Micromachining to Hybrid-Micromachining 276 12.6.1 Classification According to Material Removal Hybrid-Micromachining Phenomena 277 12.6.2 Classification According to Categories Based on Material Removal Accuracy 277 12.6.3 Classification According to Hybrid-Micromachining Purposes 278 12.6.4 Classification of Hybrid Micromanufacturing Processes 278 12.7 Materials Are Used and Application of Hybrid-Micromachining 278 12.8 Conclusions 279 References 279 13 Material Removal in Spark-Assisted Chemical Engraving for Micromachining 283 Sumanta Banerjee 13.1 Introduction 284 13.2 Essentials of SACE 285 13.2.1 Instances of SACE Micromachining 286 13.3 Genesis of SACE Acronym: A Brief Historical Survey 286 13.4 SACE: A Viable Micromachining Technology 288 13.4.1 Mechanical µ-Machining Techniques 288 13.4.2 Chemical µ-Machining Methods 289 13.4.3 Thermal µ-Machining Methods 289 13.5 Material Removal Mechanism in SACE µ-Machining 290 13.5.1 General Aspects 290 13.5.2 Micromachining at Shallow Depths 294 13.5.3 Micromachining at High Depths 300 13.5.4 Micromachining by Chemical Reaction 301 13.6 SACE µ-Machining Process Control 303 13.6.1 Analysis of Process 303 13.6.2 Etch Promotion 304 13.7 Conclusion and Scope for Future Work 307 References 308 Index 313
Les mer