Circuit analysis is the fundamental gateway course for computer and electrical engineering majors. Irwin and Nelms’ Engineering Circuit Analysis has long been regarded as the most dependable textbook on the subject. Focusing on the most complete set of pedagogical tools available and student-centered learning design, this book helps students complete the connection between theory and practice and build their problem-solving skills. Key concepts are explained multiple times in varying formats to support diverse learning styles, followed by detailed examples, including application and design examples. These are then followed by Learning Assessments, which allow students to work similar problems and check their results against the answers provided. At the end of each chapter, the book includes a robust set of conceptual and computational problems at a wide range of difficulty levels.   This International Adaptation enhances the coverage of network theorems by adding new theorems such as reciprocity, compensation, and Millman’s, and strengthens the topic of filter networks by including cascaded and Butterworth filters. This edition also includes inverse hybrid and inverse transmission parameters to describe two-port networks and a dedicated chapter on diodes
Les mer
1 Basic Concepts  1.1 System of Units  1.2 Basic Quantities  1.3 Circuit Elements  Summary  Problems    2 Resistive Circuits  2.1 Ohm’s Law  2.2 Kirchhoff’s Laws  2.3 Single-Loop Circuits  2.4 Single-Node-Pair Circuits  2.5 Series and Parallel Resistor Combinations  2.6 Circuits with Series-Parallel Combinations of Resistors  2.7 Wye ⇌ Delta Transformations  2.8 Circuits with Dependent Sources  2.9 Resistor Technologies for Electronic Manufacturing  2.10 Application Examples  2.11 Design Examples  Summary  Problems    3Network Theorems      3.1 Nodal Analysis    3.2 Loop Analysis    3.3 Equivalence and Linearity      3.4 Superposition  3.5 Thevenin’s and Norton’s Theorems  3.6 Maximum Power Transfer  3.7 Reciprocity Theorem  3.8 Compensation Theorem  3.9 Millman’s Theorem  3.10 Application Examples  3.11 Design Examples      Summary       Problems    4 Operational Amplifiers   4.1 Introduction  4.2 Op-Amp Models  4.3 Fundamental Op-Amp Circuits  4.4 Comparators  4.5 Application Examples  4.6 Design Examples  Summary  Problems    5 Capacitance and Inductance   5.1 Capacitors  5.2 Inductors  5.3 Capacitor and Inductor Combinations  5.4 RC Operational Amplifier Circuits  5.5 Application Examples  5.6 Design Examples  Summary  Problems    6 First- and Second-Order Transient Circuits  6.1 Introduction  6.2 First-Order Circuits  6.3 Second-Order Circuits  6.4 Application Examples  6.5 Design Examples  Summary   Problems    7 Sinusoidal Steady-State Analysis  7.1 Sinusoids  7.2 Sinusoidal and Complex Forcing Functions  7.3 Phasors  7.4 Phasor Relationships for Circuit Elements  7.5 Impedance and Admittance  7.6 Phasor Diagrams  7.7 Basic Analysis Using Kirchhoff’s Laws  7.8 Analysis Techniques  7.9 Application Examples  7.10 Design Examples  Summary  Problems    8 Steady-State Power Analysis  8.1 Instantaneous Power  8.2 Average Power  8.3 Maximum Average Power Transfer  8.4 Effective or RMS Values  8.5 The Power Factor  8.6 Complex Power  8.7 Power Factor Correction  8.8 Single-Phase Three-Wire Circuits  8.9 Safety Considerations  8.10 Application Examples  8.11 Design Examples  Summary   Problems    9 Magnetically Coupled Networks  9.1 Mutual Inductance  9.2 Energy Analysis  9.3 The Ideal Transformer  9.4 Safety Considerations  9.5 Application Examples  9.6 Design Examples  Summary  Problems    10 Three-Phase Circuits  10.1 Three-Phase Circuits  10.2 Three-Phase Connections  10.3 Source/Load Connections  10.4 Power Relationships  10.5 Unbalanced Load Connections   10.6 Power Factor Correction  10.7Application Examples  10.8 Design Examples  Summary  Problems    11 Variable-Frequency Network Performance  11.1 Variable Frequency-Response Analysis  11.2 Sinusoidal Frequency Analysis  11.3 Resonant Circuits  11.4 Scaling  11.5 Filter Networks  11.6 Application Examples  11.7 Design Examples  Summary   Problems    12 The Laplace Transform  12.1 Definition  12.2 Step and Impulse Functions   12.3 Transform Pairs  12.4 Properties of the Laplace Transform  12.5 Performing the Inverse Transform  12.6 Convolution Integral  12.7 Initial-Value and Final-Value Theorems  12.8 Solving Differential Equations Using Laplace Transforms  Summary  Problems    13 Application of the Laplace Transform to Circuit Analysis   13.1 Laplace Circuit Solutions  13.2 Circuit Element Models  13.3 Analysis Techniques  13.4 Transfer Function  13.5 Pole-Zero Plot/Bode Plot Connection  13.6 Steady-State Response  Summary   Problems    14 Fourier Analysis Techniques   14.1 Fourier Series  14.2 Fourier Transform  14.3 Application Example  14.4 Design Examples  Summary    Problems    15 Two-Port Networks  15.1 Admittance Parameters  15.2 Impedance Parameters  15.3 Hybrid Parameters  15.4 Transmission Parameters  15.5 Inverse Hybrid Parameters  15.6 Inverse Transmission Parameters  15.7 Parameter Conversions  15.8 Interconnection of Two-Port Networks  Summary  Problems    16 Diodes  16.1 Introduction  16.2 Modeling Techniques  16.3 Analysis Using the Diode Equation  16.4 Diode Rectifiers  16.5 Zener Diodes  Summary  Problems    APPENDIX A Complex Numbers  APPENDIX B Fundamental of Engineering (FE) Exam Problems (online supplement)  Index 
Les mer

Produktdetaljer

ISBN
9781119667964
Publisert
2021-12-20
Utgave
12. utgave
Utgiver
Vendor
John Wiley & Sons Inc
Vekt
454 gr
Høyde
10 mm
Bredde
10 mm
Dybde
10 mm
Aldersnivå
U, 05
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
832

Biographical note

J. David Irwin is an American engineering educator and author of popular textbooks in electrical engineering and related areas. He is the Earle C. Williams Eminent Scholar and former Electrical and Computer Engineering Department Head at Auburn University.

R. Mark Nelms is the author of Basic Engineering Circuit Analysis, 12th Edition, published by Wiley.