Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy.
Les mer
PrefaceAcknowledgmentsAbout the EditorsList of ContributersChapter 1 Introduction 1.1 Overview 1.2 Impact of Nanomaterials 1.3 Challenges and Difficulties in Manufacturing Nanomaterials-Based Devices 1.3.1 Role of Microfluidics 1.3.2 Role of Robotic Nanoassembly 1.4 Summary ReferencesChapter 2 Nanomaterials Processing for Device Manufacturing 2.1 Introduction 2.2 Characteristics of Carbon Nanotubes 2.3 Classification of Carbon Nanotubes using Microfluidics 2.3.1 Dielectrophoretic Phenomenon on CNTs 2.3.2 Experimental Results: Separation of Semiconducting CNTs 2.4 Deposition of CNTs by Microrobotic Workstation 2.5 Summary ReferencesChapter 3 Design and Generation of Dielectrophoretic Forces for Manipulating Carbon Nanotubes 3.1 Overview 3.2 Dielectrophoretic Force Modeling 3.2.1 Modeling of Electrorotation for Nanomanipulation 3.2.2 Dynamic Modeling of Rotational Motion of Carbon Nanotubes for Intelligent Manufacturing of CNT-Based Devices 3.2.3 Dynamic Effect of Fluid Medium on Nano Particles by Dielectrophoresis 3.3 Theory for Microelectrode and Electric Field Design for Carbon Nanotube Applications 3.3.1 Microelectrode Design 3.3.2 Theory for Microelectrode Design 3.4 Electric Field Design 3.5 Carbon Nanotubes Application-Simulation Results 3.5.1 Dielectrophoretic Force: Simulation Results 3.5.2 Electrorotation (Torque): Simulation Results 3.5.3 Rotational Motion of Carbon Nanotubes: Simulation Results 3.6 Summary ReferencesChapter 4 Atomic Force Microscope-Based Nanorobotic System for Nanoassembly 4.1 Introduction to AFM and Nanomanipulation 4.1.1 AFMâs Basic Principle 4.1.2 Imaging Mode of AFM 4.1.3 AFM-Based Nanomanipulation 4.2 AFM-Based Augmented Reality System 4.2.1 Principle for 3D Nanoforce Feedback 4.2.2 Principle for Real-Time Visual Feedback Generation 4.2.3 Experimental Testing and Discussion 4.3 Augmented Reality System Enhanced by Local Scan 4.3.1 Local Scan Mechanism for Nanoparticle 4.3.2 Local Scan Mechanism for Nanorod 4.3.3 Nanomanipulation with Local Enhanced Augmented Reality System 4.4 CAD-Guided Automated Nanoassembly 4.5 Modeling of Nanoenvironments 4.6 Automated Manipulation of CNT 4.7 Summary ReferencesChapter 5 On-Chip Band Gap Engineering of Carbon Nanotubes 5.1 Introduction 5.2 Quantum Electron Transport Model 5.2.1 Nonequilibrium Greenâs Functions 5.2.2 Poissonâs Equation and Self-Consistent Algorithm 5.3 Electrical Breakdown Controller of a CNT 5.3.1 Extended Kalman Filter for Fault Detection 5.4 Effects of CNT Breakdown 5.4.1 Current-Voltage Characteristics 5.4.2 Infrared Responses 5.5 Summary ReferencesChapter 6 Packaging Processes for Carbon Nanotube-Based Devices 6.1 Introduction 6.2 Thermal Annealing of Carbon Nanotubes 6.3 Electrical and Optical Responses of Carbon Nanotubes After Thermal Annealing 6.4 Parylene Thin Film Packaging 6.5 Electrical and Optical Stability of the CNT-Based Devices After Packaging 6.6 Summary ReferencesChapter 7 Carbon Nanotube Schottky Photodiodes 7.1 Introduction 7.2 Review of CNT Photodiodes 7.3 Design of CNT Schottky Photodiodes 7.4 Symmetric Schottky Photodiodes 7.5 Asymmetric Schottky Photodiodes 7.6 Summary ReferencesChapter 8 Carbon Nanotube Field-Effect Transistor-Based Photodetectors 8.1 Introduction 8.2 Back-Gate AuâCNTâAu Transistors 8.3 Back-Gate AgâCNTâAg Transistors 8.4 Back-Gate AuâCNTâAg Transistors 8.5 Middle-Gate Transistors 8.6 Multigate Transistors 8.7 Detector Array Using CNT-Based Transistors 8.8 Summary ReferencesChapter 9 Nanoantennas on Nanowire-Based Optical Sensors 9.1 Introduction 9.2 Nanoantenna Design Consideration for IR Sensors 9.2.1 Optical Nanoantennas Combined with CNT-Based IR Sensors 9.3 Theoretical Analysis: Nanoantenna Near-Field Effect 9.4 Fabrication of Nano Sensor Combined with Nanoantenna 9.5 Photocurrent Measurement on Nano Sensor Combined with Nanoantenna 9.6 Summary ReferencesChapter 10 Design of Photonic Crystal Waveguides 10.1 Introduction 10.2 Review of the Photonic Crystal 10.3 Principle for Photonic Crystal 10.4 Phototonic Band Gap of Photonic Crystal 10.4.1 Effect from Dielectric Constants 10.4.2 Effect from Different Structures 10.5 Photonic Crystal Cavity 10.5.1 Basic Design of Photonic Crystal Defect 10.5.2 Defect from Dielectric Constants 10.5.3 Defect from Dielectric Size 10.5.4 Effect from Lattice Number 10.6 Design and Experimental Results of Photonic Crystal Cavity 10.6.1 Design 10.6.2 Photoresponses of CNT-Based IR Sensors with Photonic Crystal Cavities 10.6.3 Photocurrent Mapping of the CNT-Based IR Sensors with Photonic Crystal Cavities 10.7 Summary ReferencesChapter 11 Organic Solar Cells Enhanced by Carbon Nanotubes 11.1 Introduction 11.2 Application of Carbon Nanotubes in Organic Solar Cells 11.3 Fabrication of Carbon Nanotube-Enhanced Organic Solar Cells 11.4 Performance Analysis of OSCs Enhanced by CNTs 11.4.1 J-V of SWCNTs-Enhanced OSCs Under Illumination 11.4.2 J-V of SWCNTs-Enhanced OSCs in Dark 11.5 Electrical Role of SWCNTs in OSCs 11.6 Summary ReferencesChapter 12 Development of Optical Sensors Using Graphene 12.1 Introduction 12.2 Fabrication of Graphene-Based Devices 12.3 Dielectrophoretic Effect on Different Graphene Flakes 12.4 Electrical and Optical Behaviors of Various Graphene-Based Devices 12.5 Summary ReferencesChapter 13 Indium Antimonide (InSb) Nanowire-Based Photodetectors 13.1 Introduction 13.2 Growth of InSb Nanowires 13.3 Photodetectors Using Single InSb Nanowires 13.3.1 Symmetric InSb Nanowire Photodetectors 13.3.2 Asymmetric InSb Nanowire Photodetectors 13.4 Summary ReferencesChapter 14 Carbon Nanotube-Based Infrared Camera Using Compressive Sensing 14.1 Introduction 14.2 Theoretical Foundation of Compressive Sensing 14.2.1 General Idea 14.2.2 Sparsity 14.2.3 Restricted Isometry Property 14.2.4 Random Matrix 14.2.5 Compressive Sensing Applications 14.3 Compressive Sensing for Single-Pixel Photodetectors 14.3.1 System Architecture 14.3.2 Measurement Matrix 14.3.3 Data Sampling and Image Reconstruction Algorithm 14.4 Experimental Setup and Results 14.4.1 Static Measurement 14.4.2 Dynamic Observation 14.4.3 Performance Analysis 14.5 Summary and Perspectives ReferencesIndex
Les mer
First detailed, practical book explaining the engineering aspects of designing, synthesizing, building and manufacturing nanophotonic devices using efficient nanowires materials and technologies. Key application areas include sensing, electronics and solar energy.
Les mer
First detailed, practical book explaining the engineering aspects of designing, synthesizing, building and manufacturing nanophotonic devices using efficient nanowires materials and technologies. Key application areas include sensing, electronics and solar energy.
Les mer
Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies
Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis)
Explores key application areas such as sensing, electronics and solar energy
Les mer