This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability. A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage for the first time.
Les mer
This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability.
Les mer
The Role of Temperature in Electronic Design.- Temperature Effects in Semiconductors.- Sensing Temperature Dependence.- Variation-Tolerant Adaptive Voltage Systems.- Controlling the Temperature Dependence.- Exploiting Temperature Dependence in Low-Swing Interconnect Links.- Avoiding Temperature-Induced Errors in On-Chip Interconnects.- Future Work and Open Problems.
Les mer
This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems. It provides a holistic discussion of temperature management, including physical phenomena (reversal of the MOSFET temperature dependence) that have recently become problematic, along with circuit techniques for detecting, controlling, and adapting to these phenomena. A detailed discussion is also included of the general aspects of thermal-aware system design and management of temperature-induced faults. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability. A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage for the first time.Provides background on aspects of nanoscale circuits and systems that are affected by temperature, how they are affected by temperature, and what systems can be used to reduce these effects; Describes chip implementation details of a new type of temperature sensor that can ensure reliable operation across multiple temperature dependences;Includes new methods for achieving temperature insensitivity with example circuits and fabrication-related details such as process variation management.
Les mer
Provides background on aspects of nanoscale circuits and systems that are affected by temperature, how they are affected by temperature, and what systems can be used to reduce these effects Describes chip implementation details of a new type of temperature sensor that can ensure reliable operation across multiple temperature dependences Includes new methods for achieving temperature insensitivity with example circuits and fabrication-related details such as process variation management Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9781489987228
Publisert
2014-10-20
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, 05
Språk
Product language
Engelsk
Format
Product format
Heftet