The topic of wettabilty is extremely important from both fundamental and applied aspects. The applications of wettability range from self-cleaning windows to micro- and nanofluidics. This book represents the cumulative wisdom of a contingent of world-class (researchers engaged in the domain of wettability. In the last few years there has been tremendous interest in the "Lotus Leaf Effect" and in understanding its mechanism and how to replicate this effect for myriad applications. The topics of superhydrophobicity, omniphobicity and superhydrophilicity are of much contemporary interest and these are covered in depth in this book.
Les mer
The topic of wettabilty is extremely important from both fundamental and applied aspects. The applications of wettability range from self-cleaning windows to micro- and nanofluidics. This book represents the cumulative wisdom of a contingent of world-class (researchers engaged in the domain of wettability.
Les mer
Preface xvii Acknowledgements xxi Part 1: Fundamental Aspects 1 1 Correlation between Contact Line Pinning and Contact Angle Hysteresis on Heterogeneous Surfaces: A Review and Discussion 3 Mohammad Amin Sarshar, Wei Xu, and Chang-Hwan Choi 1.1 Introduction 3 1.2 Contact Line Pinning on Chemically Heterogeneous Flat Surfaces 4 1.3 Contact Line Pinning on Hydrophobic Structured Surfaces 7 1.4 Summary and Conclusion 14 2 Computational and Experimental Study of Contact Angle Hysteresis in Multiphase Systems 19 Vahid Mortazavi, Vahid Hejazi, Roshan M D'Souza, and Michael Nosonovsky 2.1 Introduction 19 2.2 Origins of the CA Hysteresis 24 2.3 Modeling Wetting/Dewetting in Multiphase Systems 27 2.4 Experimental Observations 30 2.5 Numerical Modeling of CA Hysteresis 35 2.6 Conclusions 44 3 Heterogeneous Nucleation on a Completely Wettable Substrate 49 Masao Iwamatsu 3.1 Introduction 49 3.2 Interface-Displacement Model 51 3.3 Nucleation on a Completely-Wettable Flat Substrate 54 3.4 Nucleation on a Completely-Wettable Spherical Substrate 65 3.5 Conclusion 69 4 Local Wetting at Contact Line on Textured Hydrophobic Surfaces 73 Ri Li and Yanguang Shan 4.1 Introduction 73 4.2 Static Contact Angle 76 4.3 Wetting of Single Texture Element 80 4.4 Summary 85 5 Fundamental Understanding of Drops Wettability Behavior Theoretically and Experimentally 87 Hartmann E. N’guessan, Robert White, Aisha Leh, Arnab Baksi, and Rafael Tadmor 5.1 Introduction 87 5.2 Discussion 90 5.3 Conclusion 93 6 Hierarchical Structures Obtained by Breath Figures Self-Assembly and Chemical Etching and their Wetting Properties 97 Edward Bormashenko, Sagi Balter, Roman Grynyov, and Doron Aurbach 6.1 Introduction 97 6.2 Materials and Methods 98 6.3 Results and Discussion 100 6.4 Conclusions 105 7 Computational Aspects of Self-Cleaning Surface Mechanisms 109 Muhammad Osman, Raheel Rasool, and Roger A. Sauer 7.1 Introduction 109 7.2 Droplet Membrane 111 7.3 Flow Model 121 7.4 Results 126 7.5 Summary 129 8 Study of Material–Water Interactions Using the Wilhelmy Plate Method 131 Eric Tomasetti, Sylvie Derclaye, Mary-Hélène Delvaux, and Paul G. Rouxhet 8.1 Introduction 132 8.2 Upgrading Wetting Curves 133 8.3 Study of Surface-Oxidized Polyethylene 136 8.4 Study of Amphiphilic UV-Cured Coatings 143 8.5 Conclusion 151 9 On the Utility of Imaginary Contact Angles in the Characterization of Wettability of Rough Medicinal Hydrophilic Titanium 155 S. Lüers, C. Seitz, M. Laub, and H.P. Jennissen 9.1 Introduction 156 9.2 Theoretical Considerations 156 9.3 Materials and Methods 158 9.4 Results and Discussion 161 9.5 Conclusion 171 10 Determination of Surface Free Energy at the Nanoscale via Atomic Force Microscopy without Altering the Original Morphology 173 L. Mazzola and A. Galderisi 10.1 Introduction 174 10.2 Materials and Methods 175 10.3 Results and Discussion 180 10.4 Conclusion 188 Part 2: Superhydrophobic Surfaces 191 11 Assessment Criteria for Superhydrophobic Surfaces with Stochastic Roughness 193 Angela Duparré and Luisa Coriand 11.1 Introduction 193 11.2 Model and Experiments 194 11.3 Results and Discussion 197 11.4 Summary 200 12 Nanostructured Lubricated Silver Flake/Polymer Composites Exhibiting Robust Superhydrophobicity 203 Ilker S. Bayer, Luigi Martiradonna, and Athanassia Athanassiou 12.1 Introduction 204 12.2 Experimental 210 12.3 Results and Discussion 214 12.4 Conclusions 220 13 Local Wetting Modifi cation on Carnauba Wax-Coated Hierarchical Surfaces by Infrared Laser Treatment 227 Athanasios Milionis, Roberta Ruffi lli, Ilker S. Bayer, Lorenzo Dominici, Despina Fragouli, and Athanassia Athanassiou 13.1 Introduction 228 13.2 Experimental 229 13.3 Results and Discussion 231 13.4 Conclusions 238 Part 3: Wettability Modifi cation 243 14 Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Rate of Plant Seeds 245 Edward Bormashenko, Roman Grynyov, Yelena Bormashenko, and Elyashiv Drori 14.1 Introduction 245 14.2 Experimental 246 14.3 Results and Discussion 248 14.4 Conclusions 255 15 Controlling the Wettability of Acrylate Coatings with Photo-Induced Micro-Folding 259 Thomas Bahners, Lutz Prager, and Jochen S. Gutmann 15.1 Introduction 260 15.2 The Process of Photo-induced Micro-folding 264 15.3 Experimental 265 15.4 Review of Results 267 15.5 Summary 274 16 Influence of Surface Densification of Wood on its Dynamic Wettability and Surface Free Energy 279 M. Petric, A. Kutnar, L. Rautkari, K. Laine, and M. Hughes 16.1 Introduction 280 16.2 Experimental 281 16.3 Results and Discussion 284 16.4 Summary and Conclusions 294 17 Contact Angle on Two Canadian Woods: Influence of Moisture Content and Plane of Section 297 Fabio Tomczak and Bernard Riedl 17.1 Introduction 297 17.2 Materials and Experimental Procedures 300 17.3 Results and Discussion 302 17.4 Conclusions 307 18 Plasma Deposition of ZnO Thin Film on Sugar Maple: The Effect on Contact Angle 311 Fabio Tomczak, Bernard Riedl, and Pierre Blanchet 18.1 Introduction 312 18.2 Materials and Experimental Procedures 313 18.3 Results and Discussion 316 18.4 Conclusion 325 19 Effect of Relative Humidity on Contact Angle and its Hysteresis on Phospholipid DPPC Bilayer Deposited on Glass 329 Emil Chibowski, Konrad Terpilowski, and Lucyna Holysz 19.1 Introduction 330 19.2 Experimental 331 19.3 Result and Discussion 333 19.4 Conclusion 343 Part 4: Wettability and Surface Free Energy 347 20 Contact Angles and Surface Energy of Solids: Relevance and Limitations 349 Paul G. Rouxhet 20.1 Introduction 350 20.2 Thermodynamic Background 351 20.3 Determination of the Surface Energy of a Solid from Contact Angles 354 20.4 Wettability and Surface Composition of Polypropylene Modifi ed by Oxidation 364 20.5 Wettability and Surface Cleanliness of Inorganic Materials 368 20.6 Conclusion 371 21 Surface Free Energy and Wettability of Different Oil and Gas Reservoir Rocks 377 Andrei S. Zelenev and Nathan Lett 21.1 Introduction 377 21.2 Experimental 379 21.3 Results and Discussion 381 21.4 Conclusions 386 22 Influence of Surface Free Energy and Wettability on Friction Coefficient between Tire and Road Surface in Wet Conditions 389 L. Mazzola, A. Galderisi, G. Fortunato, V. Ciaravola, and M. Giustiniano 22.1 Introduction 390 22.2 Theoretical Basis of the New Model 391 22.3 Materials and Methods 398 22.4 Results and Discussion 402 22.5 Summary and Conclusions 408 Acknowledgement 409 References 409
Les mer
With 22 articles from world-renowned researchers, this book offers an extraordinary commentary on contemporary research activity in contact angle and wettability The history of modern contact angle and wetting can be traced back to the seminal paper by Thomas Young,"An Essay on the Cohesion of Fluids," published in 1805. However, the first paper on the subject was written by Galileo Galilei in 1612 when he wrote "Bodies that Stay Atop of Water, or Move in It." Interest in wettability is far-reaching as it plays an extremely important role in many areas of human endeavor, ranging from high-tech (microelectronics, micro- and nanofluidics, MEMS and NEMS, and biomedical devices, for example) to everyday applications (e.g., washing of clothes and spraying of insecticides/pesticides on agricultural products). The 22 articles comprising this volume originate from an invited conference held in Quebec City in 2012 and showcase many of the world's foremost specialists, providing their latest research results. The book's 22 chapters are arranged into four parts: Fundamental Aspects; Superhydrophobic Surfaces; Wettability Modification; and Wettability and Surface Free Energy. The topics discussed include: contact angle hysteresis on heterogeneous surfaces and in multiphase systems; fundamental understanding of drops wettability behavior; computational aspects of self-cleaning surface mechanisms; utility of imaginary contact angles in the characterization of wettability on rough surfaces; determination of surface free energy at the nanoscale via atomic force microscopy; superhydrophobicity and its assessment criteria; wettability modification techniques for different materials; effects of cold RF plasma treatment on the germination rate of plant seeds; wettability of wood; wettability of the DPPC bilayer; wettability, contact angles, and surface free energy of solids; influence of surface free energy on the friction coefficient between a tire and road surface.
Les mer

Produktdetaljer

ISBN
9781118472927
Publisert
2013-08-30
Utgiver
Vendor
Wiley-Scrivener
Vekt
721 gr
Høyde
243 mm
Bredde
163 mm
Dybde
25 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
440

Redaktør

Biographical note

Kashmiri Lal Mittal was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor honoris causa from Maria Curie-Skłodowska University, Lublin, Poland. He is the editor of more than 110 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification, surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal Reviews of Adhesion and Adhesives.