This is the first end-to-end, full-color guide to telling powerful, actionable data stories using Tableau, the world’s #1 visualization software. Renowned expert Lindy Ryan shows you how to communicate the full business implications of your data analyses by combining Tableau’s remarkable capabilities with a deep understanding of storytelling and design.   Each chapter illuminates key aspects of design practice and data visualization, and guides you step-by-step through applying them in Tableau. Ryan demonstrates how “data stories” resemble and differ from traditional storytelling, and helps you use Tableau to analyze, visualize, and communicate insights that are meaningful to any stakeholder, in any medium.   Information Visualization in Tableau presents exercises that give you hands-on practice with the most up-to-date capabilities available through Tableau 10 and the full Tableau software ecosystem. Ryan’s classroom-tested exercises won’t just help you master the software: they’ll show you to craft data stories that inspire action.   Coverage includes: The visual data storytelling paradigm: moving beyond static charts to powerful visualizations that combine narrative with interactive graphics How to think like a data scientist, a storyteller, and a designer -- all in the same project Data storytelling case studies: the good, the bad, and the ugly Shaping data stories: blending data science, genre, and visual design Seven best practices for visual data storytelling -- and common pitfalls to avoid Tricks and hacks you can use with any toolset, not just Tableau
Les mer
Foreword     xiiPreface     xiiiAcknowledgments     xxivAbout the Author     xxvi Chapter 1  Storytelling in a Digital Era     1 A Visual Revolution     2 From Visualization to Visual Data Storytelling: An Evolution     6 From Visual to Story: Bridging the Gap     8 Summary     13 Chapter 2  The Power of Visual Data Stories     15 The Science of Storytelling     16     The Brain on Stories     16     The Human on Stories     18 The Power of Stories     20     The Classic Visualization Example     20     Using Small Personal Data for Big Stories     23     The Two-or-Four Season Debate     27     Napoleon’s March     29     Stories Outside of the Box     31 Summary     32 Chapter 3  Getting Started with Tableau     33 Using Tableau     34 Why Tableau?     34 The Tableau Product Portfolio     36     Tableau Server     37     Tableau Desktop     37     Tableau Online     37     Tableau Public     37 Getting Started     38 Connecting to Data     38     Connecting to Tables     39     Live Versus Extract     41     Connecting to Multiple Tables with Joins     42 Basic Data Prep with Data Interpreter     44 Navigating the Tableau Interface     45     Menus and Toolbar     46     Data Window     47     Shelves and Cards     47     Legends     47 Understanding Dimensions and Measures     48     Dimensions     48     Measures     48     Continuous and Discrete     48 Summary     49 Chapter 4  Importance of Context in Storytelling     51 Context in Action     53     Harry Potter: Hero or Menace?     53     Ensuring Relevant Context     55 Exploratory versus Explanatory Analysis     56 Structuring Stories     58     Story Plot     59     Story Genre     60 Audience Analysis for Storytelling     61     Who     61     What     62     Why     62     How     63 Summary     64 Chapter 5  Choosing the Right Visual     65 The Bar Chart     66     Tableau How-To: Bar Chart     68 The Line Chart     70     Tableau How-To: Line Chart     72 The Pie and Donut Charts     73     Tableau How-To: Pie and Donut Charts     74 The Scatter Plot     78     Tableau How-To: Scatter Plots     79 The Packed Bubble Chart     83     Tableau How-To: Packed Bubble Charts     83 The Treemap     85     Tableau How-To: Treemaps     86 The Heat Map     88     Tableau How-To: Heat Maps     89 Maps     91     Connecting to Geographic Data     92     Assigning Geographic Roles     93     Creating Geographic Hierarchies     95     Proportional Symbol Maps     97     Choropleth Map     100 Summary     106 Chapter 6  Curating Visuals for Your Audience     107 Visual Design Building Blocks     110 Color     110     Stepped Color     114     Reversed Color     115 Color Effects     118     Opacity     118     Mark Borders     119     Mark Halos     120 The Truth about Red and Green     121 Lines     124     Formatting Grid Lines, Zero Lines, and Drop Lines     128     Formatting Borders     131     Formatting, Shading, and Banding     134 Shapes     139     Shape Marks Card     139     Custom Shapes     140 Summary     142 Chapter 7  Preparing Data for Storytelling     143 Basic Data Prep in Tableau: Data Interpreter     144     Data Interpreter in Action     145     Handling Nulls in Tableau     147 Cleaning Messy Survey Data in Excel     148     Step 1: Surface Cleaning     150     Step 2: Creating a Numeric Copy     151     Step 3: Creating the Meta Helper File     153 Pivoting Data from Wide to Tall     155 Reshaping Survey Data with Tableau 10     156     Step 1: Creating Extracts     156     Step 2: Joining Data Sources     160 Summary     165 Chapter 8  Storyboarding Frame by Frame     167 Understanding Stories in Tableau     168     Individual Visualizations (Sheets)     169     Dashboards     169     Story Points     172 The Storyboarding Process     176     Planning Your Story’s Purpose     176     Storyboarding Your Data Story     177 Building a Story     178     Making Meta Meaningful     179     Visualizing Survey Demographics     179     Act One: Demographic Dashboard and Key Question     185     Act Two: Questioning Character Aggression     187     Act Three: The Reveal     188 Summary     190 Chapter 9  Advanced Storytelling Charts     191 Timelines     192 Bar-in-Bar Charts     199 Likert Visualizations     202     100% Stacked Bar Chart     203     Divergent Stacked Bar Chart     205 Lollipop Charts     215     Labeled Lollipops     219 Word Clouds     221 Summary     224 Chapter 10  Closing Thoughts     225 Five Steps to Visual Data Storytelling     226     Step 1 Find Data That Supports Your Story     226     Step 2 Layer Information for Understanding     227     Step 3 Design to Reveal     227     Step 4 Beware the False Reveal     227     Step 5 Tell It Fast     228 The Important Role of Feedback     228 Ongoing Learning     229     Teach Yourself: External Resources     229     Companion Materials to This Text     231 Index     233
Les mer
The Tableau software does not come with the book, however Tableau for Teaching provides free one year licenses for students and for faculty (which can be renewed). Instructors can also register their classes for class licensing and be given access to sandbox working environments for their class to collaborate together. Details are explained in the book. The links to Tableau for Teaching are: https://www.tableau.com/academic/teaching https://www.tableau.com/academic/students
Les mer

Produktdetaljer

ISBN
9780134712833
Publisert
2018-08-06
Utgiver
Vendor
Addison Wesley
Vekt
400 gr
Høyde
230 mm
Bredde
176 mm
Dybde
12 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
272

Forfatter

Biographical note

Lindy Ryan is passionate about telling stories with data. She specializes in translating raw data into insightful stories through carefully curated visuals and engaging narrative frameworks.

Before joining academia, Lindy was the Research Director for research and advisory firm Radiant Advisors from 2011 through 2016. In this role Lindy led Radiant’s analyst activities in the confluence of data discovery, visualization, and visual analytics. She also developed the methodology for the Data Visualization Competency Center (DVCC), a framework for helping data-driven organizations to effectively implement data visualization for enterprise-wide visual data analysis and communication. Her tool-agnostic approach has been successfully implemented at a variety of organizations across several industries and with multiple visualization technologies, including Tableau, Qlik, and GoodData. She remains a respected analyst in the data visualization community and is a regular contributor to several industry publications as well as a speaker at conferences worldwide.

Lindy began her academic career as an associate faculty member at City University of Seattle’s School of Applied Leadership where she taught graduate courses in business leadership from 2012 to 2016. In early 2016 she joined the ambitious team at the Rutgers Discovery Informatics Institute and began contributing to multidisciplinary research focused on designing solutions for the next generation of supercomputers tasked with enabling cutting-edge extreme-scale science. Currently, Lindy leads RDI2’s research on understanding and preventing cyberbullying behaviors in emerging technology users through advanced computing approaches.

Today, Lindy teaches courses in visual analytics and data visualization in Rutgers University’s Professional Science Masters program and in Montclair State University’s Business Analytics program. She is a recipient of the MSU Professing Excellence Award, which recognizes professors’ teaching excellence, particularly those who inspire and motivate students. This honor is especially meaningful to Lindy because in addition to her passion for teaching, her research includes a commitment to STEM advocacy, and she spends time on research related to increasing gender equity in CS&E and finding new and novel ways to nurture visual data literacy skills in early STEM learners.

Lindy is an active committee member of the New Jersey Big Data Alliance, a partnership of New Jersey-based academic institutions that serves as the State’s legislated consortium on research, education and outreach in advanced computation and big data. She is the author of The Visual Imperative: Creating a Culture of Visual Discovery released by Morgan Kaufmann in 2016, and the owner of Black Spot Books, a traditional, analytics-driven small-press publishing house.

Learn more about Lindy at www.visualdatastorytelling.com. You can also follow her on Twitter @lindy_ryan or view samples of her work on her Tableau Public page at https:// public.tableau.com/profile/lindyryan#!/.