The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the 20th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, presents a representative and useful selection of articles covering a wide range of important topics in the domain of advanced techniques for big data management. Big data has become a popular term, used to describe the exponential growth and availability of data. The recent radical expansion and integration of computation, networking, digital devices, and data storage has provided a robust platform for the explosion in big data, as well as being the means by which big data are generated, processed, shared, and analyzed. In general, data are only useful if meaning and value can be extracted from them. Big data discovery enables data scientists and other analysts to uncover patterns and correlations through analysis of large volumes of data of diverse types. Insights gleaned from big data discovery can provide businesses with significant competitive advantages, leading to more successful marketing campaigns, decreased customer churn, and reduced loss from fraud. In practice, the growing demand for large-scale data processing and data analysis applications has spurred the development of novel solutions from both industry and academia.
Les mer
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science.
Les mer
A Proxy Service for Multi-tenant Elastic Extension Tables.- Boosting Streaming Video Delivery with WiseReplica.- A Cloud-Based, Geospatial Linked Data Management System.- A Scalable Expressive Ensemble Learning Using Random Prism: A MapReduce Approach.- Performance Analysis of Adapting a MapReduce Framework to Dynamically Accommodate Heterogeneity.- An Overview of Cloud Based Content Delivery Networks: Research Dimensions and State-of-the-Art.
Les mer
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the 20th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, presents a representative and useful selection of articles covering a wide range of important topics in the domain of advanced techniques for big data management. Big data has become a popular term, used to describe the exponential growth and availability of data. The recent radical expansion and integration of computation, networking, digital devices, and data storage has provided a robust platform for the explosion in big data, as well as being the means by which big data are generated, processed, shared, and analyzed. In general, data are only useful if meaning and value can be extracted from them. Big data discovery enables data scientists and other analysts to uncover patterns and correlations through analysis of large volumes of data of diverse types. Insights gleaned from big data discovery can provide businesses with significant competitive advantages, leading to more successful marketing campaigns, decreased customer churn, and reduced loss from fraud. In practice, the growing demand for large-scale data processing and data analysis applications has spurred the development of novel solutions from both industry and academia.
Les mer
Contains six detailed papers on the hot topic of big data generation and management Covers topics ranging from video streams to Linked Data management Features "random prism" as a new classifier for machine/ensemble learning Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783662467022
Publisert
2015-03-31
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet