This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques. This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.
Les mer
This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention.
Les mer
Introduction.- Network-based Control with Asynchronous Samplings and Quantizations.- Quantized Static Output Feedback Control For Discrete-Time Systems.-  Sampled-Data Control for a Class of Linear Systems with Randomly Occurring Missing Data.- Reliable Event-triggered Retarded Dynamic Output Feedback H∞ Control for Networked Systems.- Reliable H∞ Event-triggered Control for Markov Jump Systems.- Fuzzy Resilient Energy-to-Peak Filter Design for Continuous-time Nonlinear Systems.- Fuzzy Generalized H2 Filtering For Nonlinear Discrete-Time Systems With Measurement Quantization.-  Event-triggered Dissipative Filtering for Networked semi-Markov Jump Systems.- Network-based H∞ State Estimation for Neural Networks Using Limited Measurement.- Mixed H∞/passive Synchronization for Complex Dynamical Networks with Sampled-data Control.- Index.
Les mer
This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques.This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.
Les mer
Presents recent research trends and practical examples in control and filtering of dynamic systems with constrained signals Demonstrates various dynamic system models in continuous or discrete-time domain such as Networked control systems, Markovian jump systems, Neural networks, and Complex networks for some control and filtering problems Presents many examples from practical industrial models applicable to
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783319962016
Publisert
2018-08-17
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, UP, 06, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet