<p>From the reviews:</p><p>“The book looks at three major types of preference learning: label ranking, instance ranking, and object ranking. … chapters contain case studies and actual experiments to illustrate the claims made within. … this is a useful book in an emerging and important area, and hence would be of interest to machine learning researchers. The book is quite readable to that audience, despite a heavy emphasis on formal treatment.” (M. Sasikumar, ACM Computing Reviews, September, 2011)</p>

The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Les mer
The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation.
Les mer
Preference Learning: An Introduction.- A Preference Optimization Based Unifying Framework for Supervised Learning Problems.- Label Ranking Algorithms: A Survey.- Preference Learning and Ranking by Pairwise Comparison.- Decision Tree Modeling for Ranking Data.- Co-regularized Least-Squares for Label Ranking.- A Survey on ROC-Based Ordinal Regression.- Ranking Cases with Classification Rules.- A Survey and Empirical Comparison of Object Ranking Methods.- Dimension Reduction for Object Ranking.- Learning of Rule Ensembles for Multiple Attribute Ranking Problems.- Learning Lexicographic Preference Models.- Learning Ordinal Preferences on Multiattribute Domains: the Case of CP-nets.- Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models.- Learning Aggregation Operators for Preference Modeling.- Evaluating Search Engine Relevance with Click-Based Metrics.- Learning SVM Ranking Function from User Feedback Using Document.- Metadata and Active Learning in the Biomedical Domain.- Learning Preference Models in Recommender Systems.- Collaborative Preference Learning.- Discerning Relevant Model Features in a Content-Based Collaborative Recommender System.- Author Index.- Subject Index
Les mer
The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in recent years. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. Preference learning is concerned with the acquisition of preference models from data – it involves learning from observations that reveal information about the preferences of an individual or a class of individuals, and building models that generalize beyond such training data. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The remainder of the book is organized into parts that follow the developed framework, complementing survey articles with in-depth treatises of current research topics in this area. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Les mer
From the reviews:“The book looks at three major types of preference learning: label ranking, instance ranking, and object ranking. … chapters contain case studies and actual experiments to illustrate the claims made within. … this is a useful book in an emerging and important area, and hence would be of interest to machine learning researchers. The book is quite readable to that audience, despite a heavy emphasis on formal treatment.” (M. Sasikumar, ACM Computing Reviews, September, 2011)
Les mer
This is the first book dedicated to this topic This topic has attracted considerable attention in artificial intelligence research in recent years A comprehensive treatment Includes supplementary material: sn.pub/extras
Les mer

Produktdetaljer

ISBN
9783642141249
Publisert
2010-10-10
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet