The book meticulously details a constructive mathematical model of a stochastic noise process, specifically a linear random process and its characteristics. Theoretical reasoning on the relationship between random processes with independent increments and those with independent values, known as random processes of white noise, is provided. The model of a linear random process serves as a mathematical representation of colored noises in various hues. Characteristics of both non-stationary and stationary linear random processes are elucidated, with emphasis on their ergodic properties, crucial for practical applications. The study also encompasses the vector linear random process, portraying a model of multi-channel noise signals. A novel contribution to the theory of random functions is the development of a constructive model of a conditional linear random process. This involves determining its distribution laws in the form of a characteristic function and relevant statistical characteristics, which can serve as potential indicators for identifying stochastic noise processes. The book revisits research on periodic stochastic models, examining cyclic, rhythmic, natural, and artificial phenomena, processes, and signals. A comprehensive analysis of the linear periodic random process is conducted, and the identification characteristics of periodic models of stochastic noise signals are explored. Significant attention is directed toward employing contour and phase methods as a theoretical foundation for addressing narrow-band noise signal identification challenges.
Les mer
The book meticulously details a constructive mathematical model of a stochastic noise process, specifically a linear random process and its characteristics. Theoretical reasoning on the relationship between random processes with independent increments and those with independent values, known as random processes of white noise, is provided.
Les mer
Chapter 1. Problems of Noise Signals Research.- Chapter 2. Linear Models of Stochastic Noise Signals.- Chapter 3. Periodic Models of Noise Signals.- Chapter 4. Method of Envelope and Phase in the Tasks of Identification of Narrowband Noise Signals.- Chapter 5. Identification of Vibration Noise Signals of Electric Power Facilities.- Chapter 6. Examples of Stochastic Noise Signals Identification.- Chapter 7. Identification of Air Pollution Sources.
Les mer
The book meticulously details a constructive mathematical model of a stochastic noise process, specifically a linear random process and its characteristics. Theoretical reasoning on the relationship between random processes with independent increments and those with independent values, known as random processes of white noise, is provided. The model of a linear random process serves as a mathematical representation of colored noises in various hues. Characteristics of both non-stationary and stationary linear random processes are elucidated, with emphasis on their ergodic properties, crucial for practical applications. The study also encompasses the vector linear random process, portraying a model of multi-channel noise signals. A novel contribution to the theory of random functions is the development of a constructive model of a conditional linear random process. This involves determining its distribution laws in the form of a characteristic function and relevant statistical characteristics, which can serve as potential indicators for identifying stochastic noise processes. The book revisits research on periodic stochastic models, examining cyclic, rhythmic, natural, and artificial phenomena, processes, and signals. A comprehensive analysis of the linear periodic random process is conducted, and the identification characteristics of periodic models of stochastic noise signals are explored. Significant attention is directed toward employing contour and phase methods as a theoretical foundation for addressing narrow-band noise signal identification challenges.
Les mer
Illustrates the identification of stochastic noise signals Helps identifying the vibration noise signals from electric power facilities for assessing their actual condition Focuses on stochastic models, examining cyclic, rhythmic, natural, and artificial phenomena, processes, and signals
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783031710926
Publisert
2024-10-03
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet