Harness the power of Apache Arrow to optimize tabular data processing and develop robust, high-performance data systems with its standardized, language-independent columnar memory format
Key Features
Explore Apache Arrow's data types and integration with pandas, Polars, and Parquet
Work with Arrow libraries such as Flight SQL, Acero compute engine, and Dataset APIs for tabular data
Enhance and accelerate machine learning data pipelines using Apache Arrow and its subprojects
Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionApache Arrow is an open source, columnar in-memory data format designed for efficient data processing and analytics. This book harnesses the authorâs 15 years of experience to show you a standardized way to work with tabular data across various programming languages and environments, enabling high-performance data processing and exchange.
This updated second edition gives you an overview of the Arrow format, highlighting its versatility and benefits through real-world use cases. It guides you through enhancing data science workflows, optimizing performance with Apache Parquet and Spark, and ensuring seamless data translation. Youâll explore data interchange and storage formats, and Arrow's relationships with Parquet, Protocol Buffers, FlatBuffers, JSON, and CSV. Youâll also discover Apache Arrow subprojects, including Flight, SQL, Database Connectivity, and nanoarrow. Youâll learn to streamline machine learning workflows, use Arrow Dataset APIs, and integrate with popular analytical data systems such as Snowflake, Dremio, and DuckDB. The latter chapters provide real-world examples and case studies of products powered by Apache Arrow, providing practical insights into its applications.
By the end of this book, youâll have all the building blocks to create efficient and powerful analytical services and utilities with Apache Arrow.What you will learn
Use Apache Arrow libraries to access data files, both locally and in the cloud
Understand the zero-copy elements of the Apache Arrow format
Improve the read performance of data pipelines by memory-mapping Arrow files
Produce and consume Apache Arrow data efficiently by sharing memory with the C API
Leverage the Arrow compute engine, Acero, to perform complex operations
Create Arrow Flight servers and clients for transferring data quickly
Build the Arrow libraries locally and contribute to the community
Who this book is forThis book is for developers, data engineers, and data scientists looking to explore the capabilities of Apache Arrow from the ground up. Whether youâre building utilities for data analytics and query engines, or building full pipelines with tabular data, this book can help you out regardless of your preferred programming language. A basic understanding of data analysis concepts is needed, but not necessary. Code examples are provided using C++, Python, and Go throughout the book.
Les mer
Table of ContentsGetting Started with Apache ArrowWorking with Key Arrow SpecificationsFormat and Memory HandlingCrossing the Language Barrier with the Arrow C Data APIAcero: A Streaming Arrow Execution EngineUsing the Arrow Datasets APIExploring Apache Arrow Flight RPCUnderstanding Arrow Database Connectivity (ADBC)Using Arrow with Machine Learning WorkflowsPowered by Apache ArrowHow to Leave Your Mark on ArrowFuture Development and Plans
Les mer
Produktdetaljer
ISBN
9781835461228
Publisert
2024-09-30
Utgave
2. utgave
Utgiver
Vendor
Packt Publishing Limited
Høyde
235 mm
Bredde
191 mm
AldersnivĂĽ
01, G, 01
SprĂĽk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
406
Forfatter
Foreword by