Fun and exciting projects to learn what artificial minds can createKey FeaturesCode examples are in TensorFlow 2, which make it easy for PyTorch users to follow alongLook inside the most famous deep generative models, from GPT to MuseGANLearn to build and adapt your own models in TensorFlow 2.xExplore exciting, cutting-edge use cases for deep generative AIBook DescriptionMachines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI?In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks.There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation.What you will learnExport the code from GitHub into Google Colab to see how everything works for yourselfCompose music using LSTM models, simple GANs, and MuseGANCreate deepfakes using facial landmarks, autoencoders, and pix2pix GANLearn how attention and transformers have changed NLPBuild several text generation pipelines based on LSTMs, BERT, and GPT-2Implement paired and unpaired style transfer with networks like StyleGANDiscover emerging applications of generative AI like folding proteins and creating videos from imagesWho this book is forThis is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.
Les mer
Packed with intriguing real-world projects as well as theory, Generative AI with Python and TensorFlow 2 enables you to leverage artificial intelligence creatively and generate human-like data in the form of speech, text, images, and music.
Les mer
Table of ContentsAn Introduction to Generative AI: "Drawing" Data from ModelsSetting Up a TensorFlow LabBuilding Blocks of Deep Neural NetworksTeaching Networks to Generate DigitsPainting Pictures with Neural Networks Using VAEsImage Generation with GANsStyle Transfer with GANsDeepfakes with GANsThe Rise of Methods for Text GenerationNLP 2.0: Using Transformers to Generate TextComposing Music with Generative ModelsPlay Video Games with Generative AI: GAILEmerging Applications in Generative AI
Les mer

Produktdetaljer

ISBN
9781800200883
Publisert
2021-04-30
Utgiver
Vendor
Packt Publishing Limited
Høyde
93 mm
Bredde
75 mm
AldersnivĂĽ
G, 01
SprĂĽk
Product language
Engelsk
Format
Product format
Heftet

Biographical note

Joseph Babcock has spent more than a decade working with big data and AI in the e-commerce, digital streaming, and quantitative finance domains. Through his career he has worked on recommender systems, petabyte scale cloud data pipelines, A/B testing, causal inference, and time series analysis. He completed his PhD studies at Johns Hopkins University, applying machine learning to the field of drug discovery and genomics. Raghav Bali is an author of multiple well received books and a Senior Data Scientist at one of the world’s largest healthcare organizations. His work involves research and development of enterprise-level solutions based on Machine Learning, Deep Learning, and Natural Language Processing for Healthcare and Insurance-related use cases. His previous experiences include working at Intel and American Express. Raghav has a master’s degree (gold medalist) from the International Institute of Information Technology, Bangalore.