In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.
Les mer
In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance.
Les mer
1 Introduction.- 1.1 Introduction.- 1.2 References.- 2 Fuzzy Sets.- 2.1 Introduction.- 2.2 Fuzzy Sets.- 2.3 Fuzzy Arithmetic.- 2.4 Fuzzy Functions.- 2.5 Finding the Minimum of a Fuzzy Number.- 2.6 Ordering Fuzzy Numbers.- 2.7 Fuzzy Probabilities.- 2.8 Fuzzy Numbers from Confidence Intervals.- 2.9 Computing Fuzzy Probabilities.- 2.10 Figures.- 2.11 References.- 3 Fuzzy Probability Theory.- 3.1 Introduction.- 3.2 Fuzzy Probability.- 3.3 Fuzzy Conditional Probability.- 3.4 Fuzzy Independence.- 3.5 Fuzzy Bayes’ Formula.- 3.6 Applications.- 3.7 References.- 4 Discrete Fuzzy Random Variables.- 4.1 Introduction.- 4.2 Fuzzy Binomial.- 4.3 Fuzzy Poisson.- 4.4 Applications.- 4.5 References.- 5 Fuzzy Queuing Theory.- 5.1 Introduction.- 5.2 Regular, Finite, Markov Chains.- 5.3 Fuzzy Queuing Theory.- 5.4 Applications.- 5.5 References.- 6 Fuzzy Markov Chains.- 6.1 Introduction.- 6.2 Regular Markov Chains.- 6.3 Absorbing Markov Chains.- 6.4 Application: Decision Model.- 6.5 References.- 7 Fuzzy Decisions Under Risk.- 7.1 Introduction.- 7.2 Without Data.- 7.3 With Data.- 7.4 References.- 8 Continuous Fuzzy Random Variables.- 8.1 Introduction.- 8.2 Fuzzy Uniform.- 8.3 Fuzzy Normal.- 8.4 Fuzzy Negative Exponential.- 8.5 Applications.- 8.6 References.- 9 Fuzzy Inventory Control.- 9.1 Introduction.- 9.2 Single Period Model.- 9.3 Multiple Periods.- 9.4 References.- 10 Joint Fuzzy Probability Distributions.- 10.1 Introduction.- 10.2 Continuous Case.- 10.3 References.- 11 Applications of Joint Distributions.- 11.1 Introduction.- 11.2 Political Polls.- 11.3 Fuzzy Reliability Theory.- 11.4 References.- 12 Functions of a Fuzzy Random Variable.- 12.1 Introduction.- 12.2 Discrete Fuzzy Random Variables.- 12.3 Continuous Fuzzy Random Variables.- 13 Functions of Fuzzy Random Variables.- 13.1Introduction.- 13.2 One-to-One Transformation.- 13.3 Other Transformations.- 14 Law of Large Numbers.- 15 Sums of Fuzzy Random Variables.- 15.1 Introduction.- 15.2 Sums.- 16 Conclusions and Future Research.- 16.1 Introduction.- 16.2 Summary.- 16.3 Research Agenda.- 16.4 Conclusions.- List of Figures.- List of Tables.
Les mer
Springer Book Archives
Springer Book Archives
New method of dealing with imprecise probabilities, most of which not published before Includes supplementary material: sn.pub/extras
Produktdetaljer
ISBN
9783642867880
Publisert
2012-06-01
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Forfatter