Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).
Les mer
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge.
Les mer
Evolutionary Algorithms for Data Mining and Knowledge Discovery.- Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining.- GAP: Constructing and Selecting Features with Evolutionary Computing.- Multi-Agent Data Mining using Evolutionary Computing.- A Rule Extraction System with Class-Dependent Features.- Knowledge Discovery in Data Mining via an Evolutionary Algorithm.- Diversity and Neuro-Ensemble.- Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets.- Evolutionary Computation in Intelligent Network Management.- Genetic Programming in Data Mining for Drug Discovery.- Microarray Data Mining with Evolutionary Computation.- An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts.
Les mer
This carefully edited book reflects and advances the state of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms. It emphasizes the utility of different evolutionary computing tools to various facets of knowledge discovery from databases, ranging from theoretical analysis to real-life applications. "Evolutionary Computation in Data Mining" provides a balanced mixture of theory, algorithms and applications in a cohesive manner, and demonstrates how the different tools of evolutionary computation can be used for solving real-life problems in data mining and bioinformatics.
Les mer
State of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms Demonstrates how the different tools of evolutionary computation can be used for solving real-life problems in data mining and bioinformatics Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783642421952
Publisert
2014-11-15
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Redaktør