Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas.
Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized.
After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of MLimplementation issues. For example, you’ll learn about the classification of normal and abnormal Gait patterns.
With Beginning Machine Learning in the Browser, you’ll be on your way to becoming an experienced Machine Learning developer.
What You’ll LearnWork with ML models, calculations, and information gatheringImplement TensorFlow.js libraries for ML modelsPerform Human Gait Analysis using ML techniques in the browser
Who This Book Is For
Computer science students and research scholars, and novice programmers/web developers in the domain of Internet Technologies
Les mer
Chapter 1: Web Development.- Chapter 2: Browser- based Data Processing.- Chapter 3: Human Pose.- Chapter 4: Human Pose Classification.- Chapter 5: Gait Analysis.- Chapter 6: Future Possibilities for Running AI Methods in a Browser.
Les mer
Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas. Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized.After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, you’ll learn about the classification of normal and abnormal Gait patterns.With Beginning Machine Learning in the Browser, you’ll be on your way to becoming an experienced Machine Learning developer.You will:Work with ML models, calculations, and information gatheringImplement TensorFlow.js libraries for ML modelsPerform Human Gait Analysis using ML techniques in the browser
Les mer
Perform human gait analysis with TensorFlow.JS ML and Processing (P5) libraries Build a solid foundation in machine learning with the ubiquitous JavaScript language Train and deploy ML models in the browser with TensorFlow.js
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9781484268421
Publisert
2021-04-02
Utgiver
Vendor
Apress
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Forfatter