This book takes beginner students hand-in-hand through a journey in the world of statistics without dumbing down the concepts, just making them very accessible. It teaches the basics (and beyond) by stimulating critical thinking.
- Luana Russo,
In a new textbook designed for students new to statistics and social data, Stephen Gorard focuses on non-inferential statistics as a basis to ensure students have basic statistical literacy.
Understanding why we have to learn statistics and seeing the links between the numbers and real life is a crucial starting point. Using engaging, friendly, approachable language this book will demystify numbers from the outset, explaining exactly how they can be used as tools to understand the relationships between variables.
This text assumes no previous mathematical or statistical knowledge, taking the reader through each basic technique with step-by-step advice, worked examples, and exercises. Using non-inferential techniques, students learn the foundations that underpin all statistical analysis and will learn from the ground up how to produce theoretically and empirically informed statistical results.
Les mer
In a new textbook designed for students new to statistics and social data, Gorard focuses on non-inferential statistics as a basis to provide readers with fundamental statistical literacy. Assuming no previous statistical knowledge, the author demystifies the subject in an engaging and approachable style.
Les mer
Part I: Introduction
Chapter 1: Why we use numbers in research
Chapter 2: What is a number?: Issues of measurement
Part II: Basic analyses
Chapter 3: Working with one variable
Chapter 4: Working with tables of categorical variables
Chapter 5: Examining differences between real numbers
Chapter 6: Significance tests: how to conduct them and what they do not mean
Chapter 7: Significance tests: why we should not report them
Part III: Advanced issues for analysis
Chapter 8: The role of judgement in analysis
Chapter 9: Research designs
Chapter 10: Sampling and populations
Chapter 11: What is randomness?
Chapter 12: Handling missing data: The importance of what we don’t know
Chapter 13: Handling missing data: more complex issues
Part IV: Modelling with data
Chapter 14: Errors in measurements
Chapter 15: Correlating two real numbers
Chapter 16: Predicting measurements using simple linear regression
Chapter 17: Predicting measurements using multiple linear regression
Chapter 18: Assumptions and limitations in regression
Chapter 19: Predicting outcomes using logistic regression
Chapter 20: Data reduction techniques
Part V: Conclusion
Chapter 21: Presenting data for your audience
Les mer
Produktdetaljer
ISBN
9781526413819
Publisert
2021-02-24
Utgiver
Vendor
SAGE Publications Ltd
Vekt
670 gr
Høyde
242 mm
Bredde
170 mm
Aldersnivå
U, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
320
Forfatter