<p>“The book should interest any professional mathematician whose research is connected with functional equations, especially their stability in random spaces; I also can recommend it for graduate students interested in the subject. It could serve as a complete and independent introduction to the field of stability of functional equations in random spaces and as an excellent source of references for further study.” (Janusz Brzdęk, SIAM Review, Vol. 57 (1), March, 2015)</p><p>“The book under review is essentially a collection of several recent papers related to the stability of functional equations in the framework of fuzzy and random normed spaces. … useful for graduate students who are interested in the Hyers-Ulam-Rassias stability of functional equations.” (Mohammad Sal Moslehian, zbMATH, Vol. 1281, 2014)</p>

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research.

The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.

Les mer
<p>This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces.</p>
Preface.- 1. Preliminaries.- 2. Generalized Spaces.- 3. Stability of Functional Equations in Random Normed Spaces Under Special t-norms.- 4. Stability of Functional Equations in Random Normed Spaces Under Arbitrary t-norms.- 5. Stability of Functional Equations in random Normed Spaces via Fixed Point Method.- 6. Stability of Functional Equations in Non-Archimedean Random Spaces.- 7. Random Stability of Functional Equations Related to Inner Product Spaces.- 8. Random Banach Algebras and Stability Results.​
Les mer

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject  was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide  to investigate this extensive domain of research.

The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.

Les mer
Presents results proved in detail with several outlines examples to make the presentation of the theory well understood by large audiences Discusses useful research to both pure and applied mathematicians who search for both new and old results Presents written results for scientists and engineers who are orienting their study in the language of interdisciplinary research? Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9781493901104
Publisert
2015-08-26
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet