The aim of this book is to develop the combinatorics of Young tableaux and to show them in action in the algebra of symmetric functions, representations of the symmetric and general linear groups, and the geometry of flag varieties. The first part of the book is a self-contained presentation of the basic combinatorics of Young tableaux, including the remarkable constructions of 'bumping' and 'sliding', and several interesting correspondences. In Part II these results are used to study representations with geometry on Grassmannians and flag manifolds, including their Schubert subvarieties, and the related Schubert polynomials. Much of this material has never appeared in book form.There are numerous exercises throughout, with hints or answers provided. Researchers in representation theory and algebraic geometry as well as in combinatorics will find Young Tableaux interesting and useful; students will find the intuitive presentation easy to follow.
Les mer
Part I. Calculus Of Tableux: 1. Bumping and sliding; 2. Words: the plactic monoid; 3. Increasing sequences: proofs of the claims; 4. The Robinson-Schensted-Knuth Correspondence; 5. The Littlewood-Richardson rule; 6. Symmetric polynomials; Part II. Representation Theory: 7. Representations of the symmetric group; 8. Representations of the general linear group; Part III. Geometry: 9. Flag varieties; 10. Schubert varieties and polynomials; Appendix A; Appendix B.
Les mer
Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Produktdetaljer
ISBN
9780521567244
Publisert
1996-12-28
Utgiver
Vendor
Cambridge University Press
Vekt
369 gr
Høyde
229 mm
Bredde
153 mm
Dybde
17 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
272
Forfatter