“This book presents an account of stable convergence and stable limit theorems which can serve as an introduction to the area. … The book is a big account of all major stable limit theorems which have been established in the last 50 years or so.” (Nikolai N. Leonenko, zbMATH 1356.60004, 2017)

“The present book represents a comprehensive account of the theory of stable convergence. The theory is illustrated by a number of examples and applied to a variety of limit theorems. … The book is well written, and the concepts are clearly explained. I enjoyed reading it because of both the contents and the authors’ attractive style of presentation. … I concur with this and think that the book will appeal to the student as much as to the specialist.” (Alexander Iksanov, Mathematical Reviews, February, 2016)

The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.
Les mer
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept.
Les mer
Preface.- 1.Weak Convergence of Markov Kernels.- 2.Stable Convergence.- 3.Applications.- 4.Stability of Limit Theorems.- 5.Stable Martingale Central Limit Theorems.- 6.Stable Functional Martingale Central Limit Theorems.- 7.A Stable Limit Theorem with Exponential Rate.- 8.Autoregression of Order One.- 9.Branching Processes.- A. Appendix.- B. Appendix.- Bibliography.
Les mer
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students atthe master's level with a solid knowledge of measure theoretic probability.
Les mer
First monograph entirely devoted to the subject of stable convergence Presents a clear and sound introduction to the field Includes examples of successful applications and exercise sets with solutions to illustrate the theoretical results Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783319365190
Publisert
2016-10-15
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Biographical note

Erich Haeusler studied mathematics and physics at the University of Bochum from 1972 to 1978. He received his doctorate in mathematics in 1982 from the University of Munich. Since 1991 he has been Professor of Mathematics at the University of Giessen, where he teaches probability and mathematical statistics. Harald Luschgy studied mathematics, physics and mathematical logic at the Universities of Bonn and Münster. He received his doctorate in mathematics in 1976 from the University of Münster. He held visiting positions at the Universities of Hamburg, Bayreuth, Dortmund, Oldenburg, Passau and Wien and was a recipient of a Heisenberg grant from the DFG. Since 1995 he is Professor of Mathematics at the University of Trier where he teaches probability and mathematical statistics.