<p>“This is a wonderful, well-written introduction to modern algebraic number theory that has been made accessible to a broad undergraduate audience through the author’s restriction to quadratic number fields. Historically motivated, it shows how algebraic number theory has evolved over time and depicts it as living and breathing, not as a field that became static in the late 19th century.” (Benjamin Linowitz, MAA Reviews, November 21, 2023)</p>

<p>“The book is very nicely written and the original style and choices of the topics make it agreeable reading, and might well complement and motivate the study of other classical introductions to the theory of more general number fields.” (Alessandro Cobbe, zbMATH 1498.11003, 2022)</p>

This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level.

Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study.

Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

Les mer
1. Prehistory.- 2 Quadratic Number Fields.- 3 The Modularity Theorem.- 4 Divisibility in Integral Domains.- 5 Arithmetic in some Quadratic Number Fields.- 6 Ideals in Quadratic Number Fields.- 7 The Pell Equation.- 8 Catalan's Equation.- 9 Ambiguous Ideal Classes and Quadratic Reciprocity.- 10 Quadratic Gauss Sums.- A Computing with Pari and Sage.- B Solutions.- Bibliography.- Name Index.- Subject Index.
Les mer
This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level.

Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study.

Assuming a moderate background in elementarynumber theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

Les mer
Connects quadratic fields with modern algebraic number theory Applies the theory to solve Diophantine equations Contains hundreds of exercises with solutions Includes original historical commentary
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783030786519
Publisert
2021-09-19
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Orginaltittel
Quadratische Zahlkörper

Forfatter

Biographical note

Franz Lemmermeyer has worked in algebraic number theory and has published several books on the history of number theory, in particular on reciprocity laws.