<p>"The book can be used by upper undergraduate and graduate students as well as researchers and practitioners in statistics and data science from all disciplines…A background of calculus is required for the reader but no experience in programming is needed. The writing style of the book is extremely reader friendly. It provides numerous illustrative examples, valuable resources, a rich collection of materials, and a memorable learning experience."<br /><em>~Technometrics</em></p><p>"Over many years, I have wondered about the following: Should a first undergraduate course in statistics be a Bayesian course? After reading this book, I have come to the conclusion that the answer is…yes!... this is very well written textbook that can also be used as self-learning material for practitioners. It presents a clear, accessible, and entertaining account of the interplay of probability, computations, and statistical inference from the Bayesian perspective."<br /><em>~ISCB News</em></p>
Produktdetaljer
Biographical note
Jim Albert is a Distinguished University Professor of Statistics at Bowling Green State University. His research interests include Bayesian modeling and applications of statistical thinking in sports. He has authored or coauthored several books including Ordinal Data Modeling, Bayesian Computation with R, and Workshop Statistics: Discovery with Data, A Bayesian Approach.
Jingchen (Monika) Hu is an Assistant Professor of Mathematics and Statistics at Vassar College. She teaches an undergraduate-level Bayesian Statistics course at Vassar, which is shared online across several liberal arts colleges. Her research focuses on dealing with data privacy issues by releasing synthetic data.