This textbook is the second volume of a pair that presents the latest English edition of the author’s classic, Probability. Building on the foundations established in the preceding Probability-1, this volume guides the reader on to the theory of random processes. The new edition includes expanded material on financial mathematics and financial engineering; new problems, exercises, and proofs throughout; and a Historical Review charting the development of the mathematical theory of probability. Suitable for an advanced undergraduate or beginning graduate student with a course in probability theory, this volume forms the natural sequel to Probability-1.Probability-2 opens with classical results related to sequences and sums of independent random variables, such as the zero–one laws, convergence of series, strong law of large numbers, and the law of the iterated logarithm. The subsequent chapters go on to develop the theory of random processes with discrete time: stationary processes, martingales, and Markov processes. The Historical Review illustrates the growth from intuitive notions of randomness in history through to modern day probability theory and theory of random processes.Along with its companion volume, this textbook presents a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises throughout.
Les mer
Preface.- Chapter 4: Sequences and Sums of Independent Random Variables.- Chapter 5: Stationary (Strict Sense) Random Sequences and Ergodic Theory.- Chapter 6: Stationary (Wide Sense) Random Sequences: L2-Theory.- Chapter 7: Martingales.- Chapter 8: Markov Chains.- Historical of Bibliographical Notes (Chapters 4-8).- References.- Index.- Index of Symbols.
Les mer
This textbook is the second volume of a pair that presents the latest English edition of the author’s classic, Probability. Building on the foundations established in the preceding Probability-1, this volume guides the reader on to the theory of random processes. The new edition includes expanded material on financial mathematics and financial engineering; new problems, exercises, and proofs throughout; and a Historical Review charting the development of the mathematical theory of probability. Suitable for an advanced undergraduate or beginning graduate student with a course in probability theory, this volume forms the natural sequel to Probability-1.Probability-2 opens with classical results related to sequences and sums of independent random variables, such as the zero–one laws, convergence of series, strong law of large numbers, and the law of the iterated logarithm. The subsequent chapters go on to develop the theory of random processes with discrete time: stationary processes, martingales, and Markov processes. The Historical Review illustrates the growth from intuitive notions of randomness in history through to modern day probability theory and theory of random processes.Along with its companion volume, this textbook presents a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises throughout.
Les mer
“I think this would be an excellent text by itself for an advanced course in probability.” (Allen Stenger, MAA Reviews, October 26, 2019)
Along with Probability-1, forms the third English edition of the author’s classic Probability Offers new problems, exercises, proofs, and applications in financial topics and mathematical statistics Features a Historical Review charting the development of the mathematical theory of probability Synthesizes classical ideas and results with many of the major achievements of modern probability theory Suitable for a course on random processes or for independent study
Les mer

Produktdetaljer

ISBN
9781071618295
Publisert
2021-07-21
Utgave
3. utgave
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, UU, 05
Språk
Product language
Engelsk
Format
Product format
Heftet

Forfatter
Oversetter

Biographical note

Albert N. Shiryaev is Chief Scientific Researcher and Professor of Probability Theory and Mathematical Statistics at the Steklov Mathematical Institute of the Russian Academy of Sciences and Head of the Department of Probability Theory in the Mechanics and Mathematics Faculty at Lomonosov Moscow State University. He is the recipient of the A.N. Kolmogorov Prize of the Russian Academy of Sciences in 1994 and the A.A. Markov Prize in 1974. His numerous other titles include Problems in Probability, translated by A. Lyasoff, which offers more than 1500 exercises and problems as a supplement to Probability.
Translator Dmitry M. Chibisov is Leading Scientific Researcher and Professor of Probability Theory and Mathematical Statistics at the Steklov Mathematical Institute of the Russian Academy of Sciences. He is the Editor-in-Chief of the journal Mathematical Methods of Statistics and is the translator of over 6 volumes from Russian to English.