Das Buch ist eine praxisnahe Einführung in die Numerische Mathematik zu grundlegenden Aufgabengebieten wie lineare und nichtlineare Gleichungen und Systeme, Eigenwerte von Matrizen, Approximation, Interpolation, Splines, Quadratur, Kubatur und es behandelt Anfangswertprobleme bei gewöhnlichen Differentialgleichungen. Die Autoren beschreiben die mathematischen und numerischen Prinzipien wichtiger Verfahren und stellen leistungsfähige Algorithmen für deren Durchführung dar. Zahlreiche Beispiele und erläuternde Skizzen erleichtern das Verständnis. Für jeden Problemkreis werden Entscheidungshilfen für die Auswahl der geeigneten Methode angegeben. Zu allen Verfahren wurden Programme in C entwickelt, die vom Server des Springer-Verlags abrufbar sind.
Les mer
Das Buch ist eine praxisnahe Einführung in die Numerische Mathematik zu grundlegenden Aufgabengebieten wie lineare und nichtlineare Gleichungen und Systeme, Eigenwerte von Matrizen, Approximation, Interpolation, Splines, Quadratur, Kubatur und es behandelt Anfangswertprobleme bei gewöhnlichen Differentialgleichungen.
Les mer
Vorwort.- Informationen zur Programmbibliothek.- Darstellung von Zahlen und Fehleranalyse.- Lösung nichtlinearer Gleichungen.- Verfahren zur Lösung algebraischer Gleichungen.- Lösung linearer Gleichungssysteme.- Iterationsverfahren zur Lösung linearer Gleichungssysteme.- Systeme nichtlinearer Gleichungen.- Eigenwerte und Eigenvektoren von Matrizen.- Lineare und nichtlineare Approximation.- Polynomiale Interpolation sowie Shepard-Interpolation.- Interpolierende Polynom-Splines zur Konstruktion glatter Kurven.- Akima- und Renner-Subsplines.- Spezielle Splines.- Numerische Differentiation.- Numerische Quadratur.- Numerische Kubatur.- Angangswertprobleme bei gewöhnlichen Differentialgleichungen.- Literatur.- Index.
Les mer
Das Buch ist eine praxisnahe Einführung in die Numerische Mathematik zu grundlegenden Aufgabengebieten wie lineare und nichtlineare Gleichungen und Systeme, Eigenwerte von Matrizen, Approximation, Interpolation, Splines, Quadratur, Kubatur und es behandelt Anfangswertprobleme bei gewöhnlichen Differentialgleichungen. Die Autoren beschreiben die mathematischen und numerischen Prinzipien wichtiger Verfahren und stellen leistungsfähige Algorithmen für deren Durchführung dar. Zahlreiche Beispiele und erläuternde Skizzen erleichtern das Verständnis. Für jeden Problemkreis werden Entscheidungshilfen für die Auswahl der geeigneten Methode angegeben. Zu allen Verfahren wurden Programme in C entwickelt, die vom Server des Springer-Verlags abrufbar sind.
Les mer
Über Jahrzehnte etwickelte praxisorientierte Sammlung Numerischer Algorithmen Darstellung effektiver Algorithmen zur Numerischen Mathematik Entscheidungshilfen zur optimalen Auswahl geeigneter Methoden Includes supplementary material: sn.pub/extras
Les mer

Produktdetaljer

ISBN
9783642134722
Publisert
2010-09-09
Utgave
10. utgave
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
250 mm
Bredde
170 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Tysk
Format
Product format
Innbundet

Biographical note

Gisela Engeln-Müllges war von 1982 bis 2005 Professorin am Fachbereich Maschinenbau und Mechatronik der Fachhochschule Aachen mit dem Lehr- und Forschungsgebiet Numerische Mathematik und Datenverarbeitung, 1991 bis 2005  Prorektorin für Forschung. Von 1997 bis 2003 war sie Mitglied des Wissenschaftsrates. Seit 2005 ist sie in diversen wissenschaftsbezogenen Gremien, Jurys und Arbeitsgruppen tätig.

Klaus Niederdrenk ist seit 1993 als Professor an der Fachhochschule Münster tätig. Von 1998 bis 2008 war er Rektor dieser Einrichtung, seit 2009 gehört er dem Fachbereich Wirtschaft mit dem Lehr- und Forschungsgebiet Mathematik, Quantitative Methoden an. Von 2004 bis 2007 war er Vorstandsmitglied im DAAD, seit 2007 ist er Mitglied im Wissenschaftsrat. Außerdem ist er in zahlreichen wissenschaftsbezogenen Gremien und Kommissionen engagiert.

Reinhard Wodicka arbeitete von 1953 bis 1988 am Institut für Geometrie und Praktische Mathematik der Rheinisch-Westfälischen Technischen Hochschule Aachen in verschiedenen Positionen, zuletzt war er dort ab 1975 als Studienprofessor tätig. Nach seiner Pensionierung setzte er sich intensiv mit Fragen der Numerischen Mathematik auseinander.