This textbook provides a self-contained introduction to numerical methods in probability with a focus on applications to finance.
Topics covered include the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation, and more recent developments such as the multilevel paradigm), stochastic optimization and approximation, discretization schemes of stochastic differential equations, as well as optimal quantization methods. The author further presents detailed applications to numerical aspects of pricing and hedging of financial derivatives, risk measures (such as value-at-risk and conditional value-at-risk), implicitation of parameters, and calibration.
Aimed at graduate students and advanced undergraduate students, this book contains useful examples and over 150 exercises, making it suitable for self-study.
Les mer
1 Simulation of random variables.- 2 The Monte Carlo method and applications to option pricing.- 3 Variance reduction.- 4 The Quasi-Monte Carlo method.- 5 Optimal Quantization methods I: cubatures.- 6 Stochastic approximation with applications to finance.- 7 Discretization scheme(s) of a Brownian diffusion.- 8 The diffusion bridge method: application to path-dependent options (II).- 9 Biased Monte Carlo simulation, Multilevel paradigm.- 10 Back to sensitivity computation.- 11 Optimal stopping, Multi-asset American/Bermuda Options.- 12 Miscellany.
Les mer
This textbook provides a self-contained introduction to numerical methods in probability with a focus on applications to finance.Topics covered include the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation, and more recent developments such as the multilevel paradigm), stochastic optimization and approximation, discretization schemes of stochastic differential equations, as well as optimal quantization methods. The author further presents detailed applications to numerical aspects of pricing and hedging of financial derivatives, risk measures (such as value-at-risk and conditional value-at-risk), implicitation of parameters, and calibration.Aimed at graduate students and advanced undergraduate students, this book contains useful examples and over 150 exercises, making it suitable for self-study.
Les mer
Written by an expert in the subject Covers discretization schemes of stochastic differential equations Includes over 150 exercises Contains an extensive bibliography
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783319902746
Publisert
2018-08-11
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, UP, UU, 05
Språk
Product language
Engelsk
Format
Product format
Heftet
Forfatter
Biographical note
Gilles Pagès is full Professor of Mathematics at Sorbonne Université (formerly Université Pierre & Marie Curie) specializing in probability theory, numerical probability and mathematical finance. He was the director of the Laboratoire de Probabiliéts & Modèles Aéatoires (now Laboratoire de Probabilités, Statistique et Modélisation) from 2009 to 2014, and has been the director of the Master 2 "Probabilités & Finance", also known as "Master ElKaroui", since 2001. He has published over 100 research articles in probability theory, numerical probability and financial modelling. He is also the author of several graduate and undergraduate textbooks in statistics, applied probability and mathematical finance.