In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
Les mer
We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems.
Les mer
1 A brief survey of partial differential equations.- 2 Elements of functional analysis.- 3 Elliptic equations.- 4 The Galerkin finite element method for elliptic problems.- 5 Parabolic equations.- 6 Generation of 1D and 2D grids.- 7 Algorithms for the solution of linear systems.- 8 Elements of finite element programming.- 9 The finite volume method.- 10 Spectral methods.- 11 Discontinuous element methods (DG and mortar).- 12 Diffusion-transport-reaction equations.- 13 Finite differences for hyperbolic equations.- 14 Finite elements and spectral methods for hyperbolic equations.- 15 Nonlinear hyperbolic problems.- 16 Navier-Stokes equations.- 17 Optimal control of partial differential equations.- 18 Domain decomposition methods.- 19 Reduced basis approximation for parametrized partial differential equations.
Les mer
Author faces here the basic concepts for the numerical modeling of partial differential equations An outstanding reference work in this branch of applied mathematics In particular, the author discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9788847058835
Publisert
2016-08-23
Utgave
2. utgave
Utgiver
Vendor
Springer Verlag
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Lower undergraduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Forfatter