Mathematical Algorithms for Linear Regression discusses numerous fitting principles related to discrete linear approximations, corresponding numerical methods, and FORTRAN 77 subroutines. The book explains linear Lp regression, method of the lease squares, the Gaussian elimination method, the modified Gram-Schmidt method, the method of least absolute deviations, and the method of least maximum absolute deviation. The investigator can determine which observations can be classified as outliers (those with large errors) and which are not by using the fitting principle. The text describes the elimination of outliers and the selection of variables if too many or all of them are given by values. The clusterwise linear regression accounts if only a few of the relevant variables have been collected or are collectible, assuming that their number is small in relation to the number of observations. The book also examines linear Lp regression with nonnegative parameters, the Kuhn-Tucker conditions, the Householder transformations, and the branch-and-bound method. The text points out the method of least squares is mainly used for models with nonlinear parameters or for orthogonal distances. The book can serve and benefit mathematicians, students, and professor of calculus, statistics, or advanced mathematics.
Les mer

Produktdetaljer

ISBN
9781483264547
Publisert
2016
Utgiver
Vendor
Academic Press
Språk
Product language
Engelsk
Format
Product format
Digital bok

Forfatter