In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature.The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms.The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.
Les mer
Part I: Linear Iterations.- Introduction.- Iterative Methods.- Classical Linear Iterations in the Positive Definite Case.- Analysis of Classical Iterations Under Special Structural Conditions.- Algebra of Linear Iterations.- Analysis of Positive Definite Iterations.- Generation of Iterations. Part II: Semi-Iterations and Krylov Methods.- Semi-Iterative Methods.- Gradient Methods.- Conjugate Gradient Methods and Generalizations.- Part III: Special Iterations.- Multigrid Iterations.- Domain Decomposition and Subspace Methods.- H-LU Iteration.- Tensor-based Methods.- Appendices.
Les mer
In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature.The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms.The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.
Les mer
New edition provides emphasis on the algebraic structure of linear iteration, not usually included in most literature Completely renewed references Content grew out of a series of lectures given by author Extensive and useful appendices included Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783319284811
Publisert
2016-07-01
Utgave
2. utgave
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet

Forfatter

Biographical note

Wolfgang Hackbusch is a Professor in the Scientific Computing department at Max Planck Institute for Mathematics in the Sciences. His research areas include numerical treatment of partial differential equations, numerical treatment of integral equations, and hierarchical matrices.