<p>This book presents a well-structured introduction to both general linear models and generalized linear models. … I would recommend the book as a suitable text for senior undergraduate or postgraduate students studying statistics or a reference for researchers in areas of statistics and its applications.<br />—Shuangzhe Liu, <em>International Statistical Review</em>, 2012</p><p>This book is targeted to undergraduates in statistics but can be used by researchers as a reference manual as well. It is well written, easy to read and the discussion of the examples is clear. As a complement there is a collection of slides for an introductory course on general, generalized, and mixed effects models in the homepage cited in the preface of this book. This book has a good set of references … I recommend this book as one of the textbooks to be discussed in a course for model building.<br />—Clarice G.B. Demétrio, <em>Biometrics</em>, February 2012</p>

Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R.After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM
Les mer
Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. The aut
Les mer
Introduction. The Likelihood Principle. General Linear Models. Generalized Linear Models. Mixed Effects Models. Hierarchical Models. Real-Life Inspired Problems. Appendices. Bibliography. Index.

Produktdetaljer

ISBN
9781032922362
Publisert
2024-10-14
Utgiver
Vendor
CRC Press
Vekt
453 gr
Høyde
234 mm
Bredde
156 mm
Aldersnivå
U, 05
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
316

Biographical note

Henrik Madsen is a professor in the Department of Informatics and Mathematical Modelling at the Technical University of Denmark in Lyngby. He has authored or coauthored more than 400 publications. Dr. Madsen has also led or participated in research projects involving wind power and energy load forecasting, financial forecasting and modeling, heat dynamics modeling, PK/PD modeling in drug development, data assimilation, zooneses modeling, and high performance and scientific computing.