<p>“This book is written for anybody who would like to start clustering using R … and considers both practical and theoretical aspects. … this is an in-depth introduction to clustering analysis considering both the theory and applications in R, with various examples in different fields. … More than just an introduction, this would be a very good companion book for researchers to help them understand clustering with R, and to compare the various methods and their applications.” (Sébastien Bailly, ISCB News, iscb.info, Issue 71, June, 2021)</p>
The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.
Les mer
The purpose of this book is to thoroughly prepare the reader for applied research in clustering. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses.
Les mer
Section: Introduction.- 1.1 Introduction to clustering.- 1.2 R software.- 2. Section: Standard algorithms.- 2.1 Introduction.- 2.2 Distances and dissimilarities.- 2.3 Hierarchical methods.- 2.4 Non-hierarchical methods.- 2.5 Cluster validity.- 3. Section: Fuzzy algorithms.- 3.1 Introduction.- 3.2 Fuzzy K-means.- 3.3 Fuzzy K-medoids.- 3.4 Other fuzzy variants.- 3.5 Cluster validity.- 4. Section: Model-based algorithms.- 4.1 Introduction.- 4.2 Mixture of Gaussian distributions.- 4.3 Mixture of non-Gaussian distributions.- 4.4 Parsimonious mixture models.
Les mer
The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interestedin applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.
Les mer
Provides a practical guide to clustering through real-life examples and case studies Presents standard hard clustering and up-to-date soft clustering techniques Gives a gradual introduction to R with detailed explanation of the code
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9789811305528
Publisert
2020-08-28
Utgiver
Vendor
Springer Verlag, Singapore
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Biographical note
Paolo Giordani, Department of Statistical Sciences, Sapienza University of RomeMaria Brigida Ferraro, Department of Statistical Sciences, Sapienza University of Rome
Francesca Martella, Department of Statistical Sciences, Sapienza University of Rome