Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types.Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.
Les mer
Focuses on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections.
Les mer

Produktdetaljer

ISBN
9781522590965
Publisert
2019-04-30
Utgiver
Vendor
IGI Global
Høyde
254 mm
Bredde
178 mm
Aldersnivå
U, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
281

Redaktør