From the reviews of the first edition: "This book is concerned with developing unsupervised learning procedures and building self organizing network modules that can capture regularities of the environment. ... the book provides a detailed introduction to Hebbian learning and negative feedback neural networks and is suitable for self-study or instruction in an introductory course." (Nicolae S. Mera, Zentralblatt MATH, Vol. 1069, 2005)

The central idea of Hebbian Learning and Negative Feedback Networks is that artificial neural networks using negative feedback of activation can use simple Hebbian learning to self-organise so that they uncover interesting structures in data sets. Two variants are considered: the first uses a single stream of data to self-organise. By changing the learning rules for the network, it is shown how to perform Principal Component Analysis, Exploratory Projection Pursuit, Independent Component Analysis, Factor Analysis and a variety of topology preserving mappings for such data sets. The second variants use two input data streams on which they self-organise. In their basic form, these networks are shown to perform Canonical Correlation Analysis, the statistical technique which finds those filters onto which projections of the two data streams have greatest correlation. The book encompasses a wide range of real experiments and displays how the approaches it formulates can be applied to the analysis of real problems.
Les mer
This book is the outcome of a decade’s research into a speci?c architecture and associated learning mechanism for an arti?cial neural network: the - chitecture involves negative feedback and the learning mechanism is simple Hebbian learning.
Les mer
Concentrates on one specific architecture and learning rule which no other book does State of the art in artificial neural networks which use Hebbian learning A comparative study of a variety of techniques that have been drawn from extensions of one network The close link between statistics and artificial neural networks is made clear No other direct competition
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9781849969451
Publisert
2010-10-22
Utgiver
Springer London Ltd
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
18

Forfatter