Everyonelovesagoodcompetition. AsIwritethis,twobillionfansareeagerly anticipating the 2006 World Cup. Meanwhile, a fan base that is somewhat smaller (but presumably includes you, dear reader) is equally eager to read all about the results of the NIPS 2003 Feature Selection Challenge, contained herein. Fans of Radford Neal and Jianguo Zhang (or of Bayesian neural n- works and Dirichlet di?usion trees) are gloating “I told you so” and looking forproofthattheirwinwasnota?uke. Butthematterisbynomeanssettled, and fans of SVMs are shouting “wait ’til next year!” You know this book is a bit more edgy than your standard academic treatise as soon as you see the dedication: “To our friends and foes. ” Competition breeds improvement. Fifty years ago, the champion in 100m butter?yswimmingwas22percentslowerthantoday’schampion;thewomen’s marathon champion from just 30 years ago was 26 percent slower. Who knows how much better our machine learning algorithms would be today if Turing in 1950 had proposed an e?ective competition rather than his elusive Test? But what makes an e?ective competition? The ?eld of Speech Recognition hashadNIST-runcompetitionssince1988;errorrateshavebeenreducedbya factorofthreeormore,butthe?eldhasnotyethadtheimpactexpectedofit. Information Retrieval has had its TREC competition since 1992; progress has been steady and refugees from the competition have played important roles in the hundred-billion-dollar search industry. Robotics has had the DARPA Grand Challenge for only two years, but in that time we have seen the results go from complete failure to resounding success (although it may have helped that the second year’s course was somewhat easier than the ?rst’s).
Les mer
Fifty years ago, the champion in 100m butter?yswimmingwas22percentslowerthantoday’schampion;thewomen’s marathon champion from just 30 years ago was 26 percent slower. Who knows how much better our machine learning algorithms would be today if Turing in 1950 had proposed an e?ective competition rather than his elusive Test?
Les mer
An Introduction to Feature Extraction.- An Introduction to Feature Extraction.- Feature Extraction Fundamentals.- Learning Machines.- Assessment Methods.- Filter Methods.- Search Strategies.- Embedded Methods.- Information-Theoretic Methods.- Ensemble Learning.- Fuzzy Neural Networks.- Feature Selection Challenge.- Design and Analysis of the NIPS2003 Challenge.- High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion Trees.- Ensembles of Regularized Least Squares Classifiers for High-Dimensional Problems.- Combining SVMs with Various Feature Selection Strategies.- Feature Selection with Transductive Support Vector Machines.- Variable Selection using Correlation and Single Variable Classifier Methods: Applications.- Tree-Based Ensembles with Dynamic Soft Feature Selection.- Sparse, Flexible and Efficient Modeling using L 1 Regularization.- Margin Based Feature Selection and Infogain with Standard Classifiers.- Bayesian Support Vector Machines for Feature Ranking and Selection.- Nonlinear Feature Selection with the Potential Support Vector Machine.- Combining a Filter Method with SVMs.- Feature Selection via Sensitivity Analysis with Direct Kernel PLS.- Information Gain, Correlation and Support Vector Machines.- Mining for Complex Models Comprising Feature Selection and Classification.- Combining Information-Based Supervised and Unsupervised Feature Selection.- An Enhanced Selective Naïve Bayes Method with Optimal Discretization.- An Input Variable Importance Definition based on Empirical Data Probability Distribution.- New Perspectives in Feature Extraction.- Spectral Dimensionality Reduction.- Constructing Orthogonal Latent Features for Arbitrary Loss.- Large Margin Principles for Feature Selection.- Feature Extraction for Classificationof Proteomic Mass Spectra: A Comparative Study.- Sequence Motifs: Highly Predictive Features of Protein Function.
Les mer
This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. "This book compiles some very promising techniques, coming from an extremely smart collection of researchers, delivering their best ideas in a competitive environment."Trevor Hastie, Stanford University"Feature selection is a key technology for making sense of the high dimensional data. Isabelle Guyon et al. have done a splendid job in designing a challenging competition, and collecting the lessons learned."Bernhard Schoelkopf, Max Planck Institute"There has been until now insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons. This volume is noteworthy for the breadth of methods covered, the clarity of presentations, the unity in notation and the helpful statistical appendices."David G. Stork, Ricoh Innovations"Feature extraction finds application in biotechnology, industrial inspection, the Internet, radar, sonar, and speech recognition. This book will make a difference to the literature on machine learning."Simon Haykin, Mc Master University "This book sets a high standard as the public record of an interesting and effective competition."Peter Norvig, Google Inc.
Les mer
Features the results of the NIPS 2003 workshop on feature extraction Includes supplementary material: sn.pub/extras

Produktdetaljer

ISBN
9783662517710
Publisert
2017-04-30
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet