This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics.Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included.Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.
Les mer
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments.
From the Contents: Linear Estimators of a Random-Parameter Vector.-Basis of the Method of Polynomial Approximation.- Polynomial Approximation and Optimization of Control.- Polynomial Approximation Technique Applied to Inverse Vector Functions.- Identification of Parameters of Nonlinear Dynamical Systems: Smoothing, Filtering and Forecasting the State Vector.- Estimating Status Vectors from Sight Angles.- Estimation of Parameters of Stochastic Models.- Designing the Control of Motion to a Target Point of Phase Space.- Inverse Problems of Dynamics Algorithm for Identifying Parameters of an Aircraft
Les mer
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics.Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included.Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.
Les mer
Lays down a new method of solving inverse problems equations with weaker requirements than existing methods Reinforces basic principles and demonstrates methodical efficiency using non-trivial applied examples Relevant to many applications from bioinformatics through aerodynamics to financial mathematics Includes supplementary material: sn.pub/extras
Les mer

Produktdetaljer

ISBN
9783319791418
Publisert
2018-04-19
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Redaktør