This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded.  General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of  Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added,with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem.The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference.Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.
Les mer
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications.
Preface to Second Edition.- Preface to First Edition.- I. Random Maps, Distribution, and Mathematical Expectation.- II. Independence, Conditional Expectation.- III. Martingales and Stopping Times.- IV. Classical Central Limit Theorems.- V. Classical Zero-One Laws, Laws of Large Numbers and Large Deviations.- VI. Fourier Series, Fourier Transform, and Characteristic Functions.- VII. Weak Convergence of Probability Measures on Metric Spaces.- VIII. Random Series of Independent Summands.- IX. Kolmogorov's Extension Theorem and Brownian Motion.- X. Brownian Motion: The LIL and Some Fine-Scale Properties.- XI. Strong Markov Property, Skorokhod Embedding and Donsker's Invariance Principle.- XII. A Historical Note on Brownian Motion.- XIII. Some Elements of the Theory of Markov Processes and their Convergence to Equilibrium.- A. Measure and Integration.- B. Topology and Function Spaces.- C. Hilbert Spaces and Applications in Measure Theory.- References.- Symbol Index.- Subject Index.
Les mer
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded.  General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of  Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added,with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem.The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference.Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.
Les mer
Quicker paced introduction to the basics allows for a more in-depth treatment of such topics as convergence theory and Brownian motion Self-contained and suitable for students with varying levels of background in analysis and measure theory Includes a complete overview of basic measure theory and analysis (with proofs), and an extensive bibliography for further reading in the area Written in a lively and engaging style Second edition has additional exercises and expanded basic theory, and a new chapter on general Markov dependent sequences Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783319479729
Publisert
2017-02-21
Utgave
2. utgave
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
AldersnivĂĽ
Graduate, P, 06
SprĂĽk
Product language
Engelsk
Format
Product format
Heftet
Orginaltittel
A Basic Course in Probability Theory

Biographical note

Rabi Bhattacharya, PhD, has held regular faculty positions at UC Berkeley; Indiana University; and the University of Arizona. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship. He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics.

Edward C. Waymire, PhD, is Professor of Mathematics at Oregon State University. He received a PhD in mathematics from the University of Arizona in the theory of interacting particle systems. His primary research concerns applications of probability and stochastic processes to problems of contemporary applied mathematics pertaining to various types of flows, dispersion, and random disorder.
Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.