<p>From the reviews of the second edition:</p>
<p></p>
<p>"In this book we have an exposition of the theory of function fields in one variable from the algebraic point of view … . The book is carefully written, the concepts are well motivated and plenty of examples help to understand the ideas and proofs and so it can be used as a textbook for an introductory course on the (classical) arithmetic of function fields with an application to coding theory." (Felipe Zaldivar, MAA Online, January, 2009)</p>

15 years after the ?rst printing of Algebraic Function Fields and Codes,the mathematics editors of Springer Verlag encouraged me to revise and extend the book. Besides numerous minor corrections and amendments, the second edition di?ers from the ?rst one in two respects. Firstly I have included a series of exercises at the end of each chapter. Some of these exercises are fairly easy and should help the reader to understand the basic concepts, others are more advanced and cover additional material. Secondly a new chapter titled “Asymptotic Bounds for the Number of Rational Places” has been added. This chapter contains a detailed presentation of the asymptotic theory of function ?elds over ?nite ?elds, including the explicit construction of some asymptotically good and optimal towers. Based on these towers, a complete and self-contained proof of the Tsfasman-Vladut-Zink Theorem is given. This theorem is perhaps the most beautiful application of function ?elds to coding theory. The codes which are constructed from algebraic function ?elds were ?rst introduced by V. D. Goppa. Accordingly I referred to them in the ?rst edition as geometric Goppa codes. Since this terminology has not generally been - cepted in the literature, I now use the more common term algebraic geometry codes or AG codes. I would like to thank Alp Bassa, Arnaldo Garcia, Cem Guneri, ¨ Sevan Harput and Alev Topuzo? glu for their help in preparing the second edition.
Les mer
15 years after the ?rst printing of Algebraic Function Fields and Codes,the mathematics editors of Springer Verlag encouraged me to revise and extend the book. The codes which are constructed from algebraic function ?elds were ?rst introduced by V.
Les mer
Foundations of the Theory of Algebraic Function Fields.- Algebraic Geometry Codes.- Extensions of Algebraic Function Fields.- Differentials of Algebraic Function Fields.- Algebraic Function Fields over Finite Constant Fields.- Examples of Algebraic Function Fields.- Asymptotic Bounds for the Number of Rational Places.- More about Algebraic Geometry Codes.- Subfield Subcodes and Trace Codes.
Les mer
The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings and others. The main objective of this book is to provide a purely algebraic, self-contained and in-depth exposition of the theory of function fields. This new edition, published in the series Graduate Texts in Mathematics, has been considerably expanded. Moreover, the present edition contains numerous exercises. Some of them are fairly easy and help the reader to understand the basic material. Other exercises are more advanced and cover additional material which could not be included in the text. This volume is mainly addressed to graduate students in mathematics and theoretical computer science, cryptography, coding theory and electrical engineering.
Les mer
Well-established popular textbook Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540768777
Publisert
2008-11-20
Utgave
2. utgave
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet