Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book.This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
Les mer
Emerging Spatial Big Data (SBD) has potential to solve societal challenges such as water resource management, food security, disaster response and transportation. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data.
Les mer
Part I Overview of Spatial Big Data Analytics.- 1 Spatial Big.- 2 Spatial and Spatiotemporal Big Data science.- Part II Classification of Earth Observation Imagery Big Data.- 3 Overview of Earth Imagery Classification.- 4 Spatial Information Gain Based Spatial Decision Tree.- 5 Focal-Test-Based Spatial Decision Tree.- 6 Spatial Ensemble Learning.- Part III Future Research Needs.- 7 Future Research Needs.- References.
Les mer
Introduces four unique properties related to the nature of spatial data that must be accounted for in any data analysis Covers Spatial Autocorrelation Discusses Spatial Dependency in Multiple Spatial Scales Includes supplementary material: sn.pub/extras
Les mer
Produktdetaljer
ISBN
9783319601946
Publisert
2017-07-21
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet