Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics. It reveals the nonlinear and nonequilibrium features, discusses the corresponding flow and heat transfer mechanisms, and ultimately establishes an analytical engineering theory framework for hypersonic rarefied and chemical nonequilibrium flows. The original analytical findings presented are not only of great academic significance, but also hold considerable potential for applications in engineering practice. The study explores a viable new approach, beyond the heavily relied-upon numerical methods and empirical formulas, to the present research field, which could be regarded as a successful implementation of the idea and methodology of the engineering sciences.
Les mer
Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics.
Les mer
Introduction.- Theoretical Modeling of Aeroheating under Rarefied Gas Effects.- Theoretical modeling of the chemical nonequilibrium flow behind a normal shock wave.- Theoretical modeling of aero-heating under nonequilibrium real gas effects.- Conclusions and prospect.
Les mer
Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics. It reveals the nonlinear and nonequilibrium features, discusses the corresponding flow and heat transfer mechanisms, and ultimately establishes an analytical engineering theory framework for hypersonic rarefied and chemical nonequilibrium flows. The original analytical findings presented are not only of great academic significance, but also hold considerable potential for applications in engineering practice. The study explores a viable new approach, beyond the heavily relied-upon numerical methods and empirical formulas, to the present research field, which could be regarded as a successful implementation of the idea and methodology of the engineering sciences.
Les mer
Theoretically models the hypersonic rarefied reacting flows around the new generation sharp leading edge vehicles Provides analytical formulas for aeroheating prediction under rarefied gas effects and nonequilibrium real gas effects Examples a practice of the “engineering science” idea and methodology Includes supplementary material: sn.pub/extras
Les mer

Produktdetaljer

ISBN
9783662514924
Publisert
2016-09-17
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Forfatter

Biographical note

Dr. Zhi-Hui Wang

Current Affiliation: University of Chinese Academy of Sciences

2002.9-2006.7 B.Sc. degree in Theoretical and Applied Mechanics, Department of Modern Mechanics, University of Science and Technology of China

Publication list:
1. Wang Zhihui, Bao Lin, Tong Binggang. Theoretical modeling of chemical nonequilibrium stagnation point boundary layer heat transfer under rarefied conditions. Sci China-Phys Mech Astron. 2013, 56(5):866-874.
2. Wang Zhihui, Bao Lin, Tong Binggang. An analytical study on nonequilibrium dissociating gas flow behind a strong bow shockwave under rarefied conditions. Sci China-Phys Mech Astron. 2013, 56(4):671-679.
3. Zhihui Wang, Lin Bao, Binggang Tong. Theoretical modeling of the chemical non-equilibrium flow behind a normal shock wave. AIAA Journal. 2012, 50(2):494-499.
4. Zhihui Wang, Lin Bao, Binggang Tong. Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows. Physics of Fluids, 22, 126103(2010).
5. Zhihui Wang, Lin Bao, Binggang Tong. Variation character of stagnation point heat flux for hypersonic pointed bodies from continuum to rarefied flow states and its bridge function study. Sci China-Phys Mech Astron. 2009, 52(12):2007-2015.
6. Wang Zhihui, Bao Lin. Study on the aerothermodynamic characters of hypersonic small nose cone with local rarefied gas effects. Chinese Journal of Computational Physics, 2010, 27(1). (In Chinese)
7. Wang Zhihui Bao Lin Tong Binggang, On the characteristics and physical mechanism of aeroheating to hypersonic pointed bodies with local rarefied gas effects. Physics of Gases, 2010,5(2). (In Chinese).