Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.


Les mer

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. Since standard methods fail, a particular tensor calculus is needed to treat such problems.

Les mer

Part I: Algebraic Tensors.- 1 Introduction.- 2 Matrix Tools.- 3 Algebraic Foundations of Tensor Spaces.- Part II: Functional Analysis of Tensor Spaces.- 4 Banach Tensor Spaces.- 5 General Techniques.- 6 Minimal Subspaces.- Part III: Numerical Treatment.- 7 r-Term Representation.- 8 Tensor Subspace Represenation.- 9 r-Term Approximation.- 10 Tensor Subspace Approximation.- 11 Hierarchical Tensor Representation.- 12 Matrix Product Systems.- 13 Tensor Operations.- 14 Tensorisation.- 15 Multivariate Cross Approximation.- 16 Applications to Elliptic Partial Differential Equations.- 17 Miscellaneous Topics.

Les mer

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Les mer
First monograph on this subject in the field of numerical mathematics Covers algebraic and functional analysis aspects of tensor spaces Focuses on the numerical treatment
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783030355531
Publisert
2020-01-24
Utgave
2. utgave
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Forfatter

Biographical note

Wolfgang Hackbusch is working in the field of numerical mathematics for partial differential equations and integral equations. He has published monographs, e.g., about the multi-grid method, about the numerical analysis of elliptic pdes, about iterative solution of large systems of equation, and about the technique of hierarchical matrices.