In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces. Elliott Lieb is a mathematical physicist who meets the challenge of statistical mechanics head on, taking nothing for granted and not being content until the purported consequences have been shown, by rigorous analysis, to follow from the premises. The present volume contains a selection of his contributions to the field, in particular papers dealing with general properties of Coulomb systems, phase transitions in systems with a continuous symmetry, lattice crystals, and entropy inequalities. It also includes work on classical thermodynamics, a discipline that, despite many claims to the contrary, is logically independent of statistical mechanics and deserves a rigorous and unambiguous foundation of its own. The articles in this volume have been carefully annotated by the editors.
Les mer
In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces.
Commentaries.- A Survey by the Editors.- I. Thermodynamic Limit for Coulomb Systems.- I. 1 Existence of Thermodynamics for Real Matter with Coulomb Forces.- I. 2 The Constitution of Matter: Existence of Thermodynamics for Systems Composed of Electrons and Nuclei.- II. Hard Sphere Virial Coefficients.- II. 1 Suppression at High Temperature of Effects Due to Statistics in the Second Virial Coefficient of a Real Gas.- II. 2 Calculation of Exchange Second Virial Coefficient of a Hard-Sphere Gas by Path Integrals.- III. Zeros of Partition Functions.- III. 1 Monomers and Dimers.- III. 2 Theory of Monomer-Dimer Systems.- III. 3 A Property of Zeros of the Partition Function for Ising Spin Systems.- III. 4 A General Lee—Yang Theorem for One-Component and Multicomponent Ferromagnets.- IV. Reflection Positivity.- IV. 1 Existence of Phase Transitions for Anisotropic Heisenberg Models.- IV. 2 Phase Transitions in Anisotropic Lattice Spin Systems.- IV. 3 Phase Transitions in Quantum Spin Systems with Isotropic and Nonisotropic Interactions.- IV. 4 Phase Transitions and Reflection Positivity. I. General Theory and Long Range Lattice Models.- IV. 5 Phase Transitions and Reflection Positivity. II. Lattice Systems with Short-Range and Coulomb Interactions.- IV. 6 Lattice Models for Liquid Crystals.- IV. 7 Existence of Néel Order in Some Spin-1/2 Heisenberg Antiferromagnets.- IV. 8 The XY Model Has Long-Range Order for all Spins and all Dimensions Greater than One.- V. Classical Thermodynamics.- V. 1 The Third Law of Thermodynamics and the Degeneracy of the Ground State for Lattice Systems.- V. 2 A Guide to Entropy and the Second Law of Thermodynamics.- V. 3 A Fresh Look at Entropy and the Second Law of Thermodynamics.- VI. Lattice Systems.- VI. 1 Properties of a Harmonic Crystal in aStationary Nonequilibrium State.- VI. 2 The Statistical Mechanics of Anharmonic Lattices.- VI. 3 Time Evolution of Infinite Anharmonic Systems.- VI. 4 Lattice Systems with a Continuous Symmetry III. Low Temperature Asymptotic Expansion for the Plane Rotator Model.- VII. Miscellaneous.- VII. 1 The Finite Group Velocity of Quantum Spin Systems.- VII. 2 The Classical Limit of Quantum Spin Systems.- VII. 3 A Refinement of Simon’s Correlation Inequality.- VII. 4 Fluxes, Laplacians, and Kasteleyn’s Theorem.- Selecta of Elliott H. Lieb.- Publications of Elliott H. Lieb.
Les mer
In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces. Elliott Lieb is a mathematical physicist who meets the challenge of statistical mechanics head on, taking nothing for granted and not being content until the purported consequences have been shown, by rigorous analysis, to follow from the premises. The present volume contains a selection of his contributions to the field, in particular papers dealing with general properties of Coulomb systems, phase transitions in systems with a continuous symmetry, lattice crystals, and entropy inequalities. It also includes work on classical thermodynamics, a discipline that, despite many claims to the contrary, is logically independent of statistical mechanics and deserves a rigorous and unambiguous foundation of its own. The articles in this volume have been carefully annotated by the editors.
Les mer
The papers collected in this volume written by one of the leading mathematical physicists are considered as outstanding accomplishments in statistical mechanics research.
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783540222972
Publisert
2004-11-29
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
508
Forfatter