This monograph proves that any finite random number sequence is represented by the multiplicative congruential (MC) way. It also shows that an MC random number generator (d, z) formed by the modulus d and the multiplier z should be selected by new regular simplex criteria to give random numbers an excellent disguise of independence. The new criteria prove further that excellent subgenerators (d1,z1) and (d2,z2) with coprime odd submoduli d1 and d2 form an excellent combined generator (d = d1d2,z) with high probability by Sunzi’s theorem of the 5th-6th centuries (China), contrasting the fact that such combinations could never be found with MC subgenerators selected in the 20th-century criteria. Further, a combined MC generator (d = d1d2,z) of new criteria readily realizes periods of 252 or larger, requiring only fast double-precision arithmetic by powerful Sunzi’s theorem. We also obtain MC random numbers distributed on spatial lattices, say two-dimensional 4000 by 4000 lattices which may be tori, with little pair correlations of random numbers across the nearest neighbors. Thus, we evade the problems raised by Ferrenberg, Landau, and Wong.

Les mer

This monograph proves that any finite random number sequence is represented by the multiplicative congruential (MC) way. It also shows that an MC random number generator (d, z) formed by the modulus d and the multiplier z should be selected by new regular simplex criteria to give random numbers an excellent disguise of independence.

Les mer

1. Basic Concepts and Tools 2. Group Structures 3. Designs of MC Generators 4. Lattice Structures 5. Regular Simplexes and Regular Lattices 6. Extended Second-Degree Tests 7. MC Generators with Excellent Statistics 8. MC Random Numbers on Spatial Lattices 9. Random Vector Fields and Random Walks 10. Two Addenda and Closing Comments

Les mer

Produktdetaljer

ISBN
9789814968492
Publisert
2024-11-28
Utgiver
Vendor
Jenny Stanford Publishing
Vekt
453 gr
Høyde
229 mm
Bredde
152 mm
Aldersnivå
U, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
110

Biographical note

Naoya Nakazawa obtained his DSci (applied number theory) at Osaka Prefectural University, Japan. He is now the representative (theory and computing) of Hirakata Ransu Factory (HRF).

Hiroshi Nakazawa obtained his DSci (statistical physics) at Kyoto University, Japan. As a professor at Takuma National College of Technology, Japan, he enjoyed teaching students applied mathematics. He is now the representative (theory and general affairs) of HRF.