This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in different areas of physics or technology, so that the book is also a survey of historical discoveries and applications of classical electromagnetism. The solutions are complete and include detailed discussions, which take into account typical questions and mistakes by the students. Without unnecessary mathematical complexity, the problems and related discussions introduce the student to advanced concepts such as unipolar and homopolar motors, magnetic monopoles, radiation pressure, angular momentum of light, bulk and surface plasmons, radiation friction, as well as to tricky concepts and ostensible ambiguities or paradoxes related to the classical theory of the electromagnetic field. With this approach the book is both a teaching tool for undergraduates in physics, mathematics and electric engineering, and a reference for students wishing to work in optics, material science, electronics, plasma physics.
Les mer
1 Basics of Electrostatics.- 2 Electrostatics of Conductors.- 3 Electrostatics of Dielectric Media.- 4 Electric Currents.-  5 Magnetostatics.-  6 Magnetic Induction.- 7 Electromagnetic Oscillators and Wave Propagation.- 8 Maxwell Equations and Conservation Laws.- 9 Relativistic Transformations of the Fields.- 10 Radiation Emission and Scattering.- 11 Electromagnetic Waves in Matter.- 12 Transmission Lines, Waveguides.- Resonant Cavities.- 13 Additional Problems.
Les mer
This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in different areas of physics or technology, so that the book is also a survey of historical discoveries and applications of classical electromagnetism. The solutions are complete and include detailed discussions, which take into account typical questions and mistakes by the students. Without unnecessary mathematical complexity, the problems and related discussions introduce the student to advanced concepts such as unipolar and homopolar motors, magnetic monopoles, radiation pressure, angular momentum of light, bulk and surface plasmons, radiation friction, as well as to tricky concepts and ostensible ambiguities or paradoxes related to the classical theory of the electromagnetic field. With this approach the book is both a teaching tool for undergraduates in physics, mathematics and electric engineering, and a reference for students wishing to work in optics, material science, electronics, plasma physics.
Les mer
Presents a large set of new problems in electromagnetism, inspired by real phenomena and applications Provides full and detailed solutions including physical insight and discussions Includes advanced topics but without undue mathematical complexity Explicitly links problems to real world phenomena and applications
Les mer

Produktdetaljer

ISBN
9783319874814
Publisert
2018-08-31
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Biographical note

Andrea Macchi is a research scientist at CNR/INO, Pisa, Italy, and lecturer of classical electromagnetism and of plasma physics at the Physics Department of the University of Pisa. His research interests include superintense laser-matter interactions, laser-driven acceleration of particles, high field plasmonics, nonlinear plasma dynamics. He has published about 80 papers on peer reviewed journals and the textbook "A Superintense Laser-Plasma Interaction Primer" (Springer, 2013).

Giovanni Moruzzi is a retired associated professor from the Physics Department of the University of Pisa, where he is still teaching classical electromagnetism. His research interests cover atomic and molecular spectroscopy, in particular the assignment of dense molecular spectra involving internal torsional rotation. He has published more than 70 papers on peer-reviewed journals and has been coeditor and coauthor of two scientific books.

Francesco Pegoraro is a full professor at the PhysicsDepartment of the University of Pisa where he teaches classical electromagnetism and plasma physics and a corresponding member of the "Accademia dei Lincei'' in Rome. His research interests cover different areas of theoretical plasma physics ranging from magnetically confined plasmas, space and astrophysical plasmas to laser produced relativistic plasmas. He has published some 300 research papers on peer reviewed journals.