Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design.Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural. This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.  Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as > How do biological organisms carry out morphogenetic tasks so reliably? > Can we extrapolate their self-formation capabilities to engineered systems?> Can physical systems be endowed with information (or informational systems be embedded in physics) so as to create autonomous morphologies and functions?> What are the core principles and best practices for the design and engineering of such morphogenetic systems? The intended audience consists of researchers and graduate students who are working on, starting to work on, or interested in programmable self-organizing systems in a wide range of scientific fields, including computer science, robotics, bioengineering, control engineering, physics, theoretical biology, mathematics, and many others.
Les mer
Morphogenetic Engineering: Reconciling Self-Organization and Architecture.- SWARMORPH: Morphogenesis with Self-Assembling Robots.- Morphogenetic Robotics: A New Paradigm for Designing Self-Organizing, Self-Reconfigurable and Self-Adaptive Robots.- Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System.- Collective Construction with Robot Swarms.- Issues in Self-Repairing Robotic Self-Assembly.- Programming Self-Assembling Systems via Physically Encoded Information.- Swarm-Based Morphogenetic Artificial Life.- Chemotaxis-Inspired Cellular Primitives for Self-Organizing Shape Formation.- Emergent Swarm Morphology Control of Wireless Networked Mobile Robots.- Embryomorphic Engineering: Emergent Innovation Through Evolutionary Development.- Functional Blueprints: An Approach to Modularity in Grown Systems.- Mechanisms for Complex Systems Engineering Through Artificial Development.- A Synthesis of the Cell2Organ Developmental Model.- A Computational Framework for Multilevel Morphologies.- Interaction-Based Modeling of Morphogenesis in MGS.- Behavior-Finding: Morphogenetic Designs Shaped by Function.- Swarm-Based Computational Development.- Programmable and Self-Organized Processes in Plant Morphogenesis: The Architectural Development of Ryegrass.
Les mer
Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural. This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.  Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as > How do biological organisms carry out morphogenetic tasks so reliably? > Can we extrapolate their self-formation capabilities to engineered systems?> Can physical systems be endowed with information (or informational systems be embedded in physics) so as to create autonomous morphologies and functions?> What are the core principles and best practices for the design and engineering of such morphogenetic systems? The intended audience consists of researchers and graduate students who are working on, starting to work on, or interested in programmable self-organizing systems in a wide range of scientific fields, including computer science, robotics, bioengineering, control engineering, physics, theoretical biology, mathematics, and many others.
Les mer
Edited and authored by leading researchers in the field First comprehensive monograph on this newly emerging field Suitable as both self-study tutorial and reference text Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783662505649
Publisert
2016-08-23
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
AldersnivĂĽ
Research, P, 06
SprĂĽk
Product language
Engelsk
Format
Product format
Heftet