<p>“This book is intended to present various aspects of the theory of elliptic integrals and elliptic functions, and provides definitions, theorems, proofs, examples and applications. … The book is well written and organized in a clear way. It includes many figures and graphs helpful in explaining the material in each chapter of the book.” (Faitori Omer Salem, zbMATH 1542.33001, 2024)</p>

This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader’s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book.

For each notion a clear motivation is given for its study, answering the question ‘Why do we consider such objects?’, and the theory is developed in a natural way that mirrors its historical development (e.g., ‘If there is such and such an object, then you would surely expect this one’). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations.

Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts.


Les mer

This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses.

Les mer
Introduction.- Chapter 1. The arc length of curves.- Chapter 2. Classification of elliptic integrals.- Chapter 3. Applications of elliptic integrals.- Chapter 4. Jacobi’s elliptic functions on R.- Chapter 5. Applications of Jacobi’s elliptic functions.- Riemann surfaces of algebraic functions.- Chapter 7. Elliptic curves.- Chapter 8. Complex elliptic integrals.- Chapter 9. Mapping the upper half plane to a rectangle.- Chapter 10. The Abel-Jacobi theorem.- Chapter 11. The general theory of elliptic functions.- Chapter 12. The Weierstrass ℘-function.- Chapter 13. Addition theorems.- Chapter 14. Characterisation by addition formulae.- Chapter 15. Theta functions.- Chapter 16. Infinite product factorisation of theta functions.- Chapter 17. Complex Jacobian functions.- Appendix A. Theorems in analysis and complex analysis.- Bibliography.- Index.
Les mer

This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader’s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book.

For each notion a clear motivation is given for its study, answering the question ‘Why do we consider such objects?’, and the theory is developed in a natural way that mirrors its historical development (e.g., ‘If there is such and such an object, then you would surely expect this one’). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations.

Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts.



 

Les mer
Many applications to physics and to mathematics are introduced Clear motivation to each item (‘Why do we consider such objects?’) is given The theory is developed in a natural way of thinking
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783031302671
Publisert
2024-07-12
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Forfatter

Biographical note

Takashi TAKEBE is a professor at the Faculty of Mathematics, National Research University Higher School of Economics, Moscow. He studies integrable systems in mathematical physics, especially integrable nonlinear differential equations, their connection with complex analysis and solvable lattice models in statistical mechanics related to elliptic R-matrices.