Das Ziel dieses Buches ist, im Umfang einer zweisemestrigen Vorlesung die wichtigsten Grundlagen der Riemannschen Geometrie mit allen notwendigen Zwischenresultaten bereitzustellen und die zentrale Beispielklasse der homogenen Räume ausführlich darzustellen. Homogene Räume sind Riemannsche Mannigfaltigkeiten, deren Isometriegruppe transitiv auf ihnen operiert. Alternativ lassen sie sich als Quotienten von Lie-Gruppen durch Untergruppen beschreiben. Homogene Räume spielen in vielen Gebieten der Mathematik eine wichtige Rolle, etwa als Modulräume, deren Punkte Lösungen eines mathematischen Problems parametrisieren. Symmetrische Räume, d.h. Räume, die an jedem Punkt eine Punktspiegelung erlauben, werden als Spezialfall in einem eigenen Kapitel behandelt. Im letzten Kapitel werden als eine wichtige Anwendung der Riemannschen Geometrie einige Grundlagen der allgemeinen Relativitätstheorie axiomatisch deduziert.
Les mer

Produktdetaljer

ISBN
9783834883131
Publisert
2019
Utgiver
Vendor
Springer Spektrum
Språk
Product language
Tysk
Format
Product format
Digital bok

Forfatter