<p>From the reviews:</p><p>“This book is an introduction to density functional theory (DFT) … . The presentation is … aimed at a general scientific audience (physics, chemistry, etc.). … There are … many interesting choices in the covered topics. … Several appendices help in making the book self-contained.” (Gabriel Stoltz, Mathematical Reviews, Issue 2011 m)</p><p>“The book is remarkable for a down-to-earth exposition of DFT that makes it accessible for students specialized in different fields of theoretical physics. … The book may be useful both for beginners as an introduction to DFT and for specialists who would like to expand their view on rigorous foundations of this theory and to keep an eye on the cutting edge of computational methods in condense matter physics.” (Peter Kazinski, Zentralblatt MATH, Vol. 1216, 2011)</p>

Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.
Les mer
Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems.
Introduction.- Foundations of Density Functional Theory: Existence Theorems.- Effective Single-Particle Equations.- Exchange-Correlation Energy Functional.- Virial Theorems.- Orbital Functionals: Optimized Potential Method.- Time-Dependent Density Functional Theory.- Relativistic Density Functional Theory.- Further Reading.- Appendices: Functionals and the Functional Derivative.- Second Quantization in Many-Body Theory.- Scaling Behavior of Many-Body Methods.- Explicit Density Functionals for the Kinetic Energy: Thomas-Fermi Models and Beyond.- Asymptotic Behavior of Quasi-Particle Amplitudes.- Quantization of Noninteracting Fermions in Relativistic Quantum Field Theory.- Renormalization Scheme of Vacuum QED.- Relativistic Homogeneous Electron Gas.- Renormalization of Inhomogeneous Electron Gas.- Gradient Corrections to the Relativistic LDA.- Gordon Decomposition.- Some Useful Formulae.- Index.
Les mer
Density Functional Theory (DFT) has firmly established itself as the workhorse for the atomic-level simulation of condensed matter phases, pure or composite materials and quantum chemical systems. The present book is a rigorous and detailed introduction to the foundations up to and including such advanced topics as orbital-dependent functionals and both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, this text concentrates on the self-contained presentation of the basics of the most widely used DFT variants. This implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating strengths and weaknesses of a particular approach or functional. DFT for superconducting or nuclear and hadronic systems are not addressed in this work. The structure and material contained in this book allow for a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green’s function or response functions - are introduced step by step, rather than just used. The same applies to some basic notions of solid state theory, as, for instance, the Fermi surface. Also, the language of second quantization is introduced systematically in an Appendix for readers without a formal theoretical physics background.
Les mer
Written by two well-known experts in the field Useful as advanced study text, self-study guide and reference regarding the fundamentals contains advanced level material such as time-dependent and relativistic DFT Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783642267185
Publisert
2013-04-21
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, UP, 05
Språk
Product language
Engelsk
Format
Product format
Heftet