The dimmed outlines of phenomenal things all into one another unless we put on the merge focusing-glass of theory, and screw it up some­ times to one pitch of definition and sometimes to another, so as to see down into different depths through the great millstone of the world James Clerk Maxwell (1831 - 1879) For a long time after the foundation of the modern theory of electromag­ netism by James Clerk Maxwell in the 19th century, the mathematical ap­ proach to electromagnetic field problems was for a long time dominated by the analytical investigation of Maxwell's equations. The rapid development of computing facilities during the last century has then necessitated appropriate numerical methods and algorithmic tools for the simulation of electromagnetic phenomena. During the last few decades, a new research area "Computational Electromagnetics" has emerged com­ prising the mathematical analysis, design, implementation, and application of numerical schemes to simulate all kinds of relevant electromagnetic pro­ cesses. This area is still rapidly evolving with a wide spectrum of challenging issues featuring, among others, such problems as the proper choice of spatial discretizations (finite differences, finite elements, finite volumes, boundary elements), fast solvers for the discretized equations (multilevel techniques, domain decomposition methods, multipole, panel clustering), and multiscale aspects in microelectronics and micromagnetics.
Les mer
These contributions by international experts in the field of electromagnetic field computation cover a wide area of contemporary research activities. They underline the role of modelling, analysis and numerical methods to provide powerful tools for the simulation of electromagnetic phenomena.
Les mer
Gauged Current Vector Potential and Reentrant Corners in the FEM Analysis of 3D Eddy Currents.- Finite Elements for the Time Harmonic Maxwell’s Equations.- Trace Theorems on Non-Smooth Boundaries for Functional Spaces Related to Maxwell Equations: an Overview.- Applications of the Mortar Element Method to 3D Electromagnetic Moving Structures.- Numerical Stability of Collocation Schemes for Time Domain Boundary Integral Equations.- hp-Adaptive Finite Elements for Maxwell’s Equations.- Coupled Calculation of Eigenmodes.- Boundary Element Methods for Eddy Current Computation.- A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations.- The Time-Harmonic Eddy-Current Problem in General Domains: Solvability via Scalar Potentials.- Finite Element Micromagnetics.- Finite Integration Method and Discrete Electromagnetism.- Appendix. Color Plates.
Les mer
The contributions in this book by leading international experts in the field of electromagnetic field computation cover a wide area of contemporary research activities. They clearly underline the important role of modeling, analysis and numerical methods to provide powerful tools for the simulation of electromagnetic phenomena. The main topics range from the mathematical analysis of Maxwell's equations including its proper spatial discretizations (edge elements, boundary element methods, finite integration), and efficient iterative solution techniques (multigrid, domain decomposition) to multiscale aspects in micromagnetics. The reader will get acquainted with many facets of modern computational techniques and its applications to relevant problems in electromagnetism.
Les mer
Springer Book Archives
Springer Book Archives
Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540443926
Publisert
2003-02-13
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UU, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Heftet