Near-?eld optical recording is a promising way to realize a recording density 2 of over 1 Tb/in . In this chapter, we focused on the near-?eld optical head, which is a key device for near-?eld optical recording. First, we explained the technical issues regarding the near-?eld optical head and introduced some solutions to these issues. We focused on a highly e?cient near-?eld optical head that uses a wedge-shaped metallic plate, and described its optical pr- erties based on a simulation using a ?nite-di?erence time-domain method. The simulation results con?rmed that a strong optical near ?eld is generated at the apex of the metallic plate when a plasmon is excited in the metallic plate. When a TbFeCo recording medium was placed 10 nm from the ne- ?eld optical head, the size of the optical spot was 30 nm, which corresponds 2 to an areal recording density of approximately 1 Tb/in . The e?ciency was 20% if we assume that the incident beam was a Gaussian beam with a full width at half-maximum of 1µ m. Furthermore, we discussed an optical head using two metallic plates. We con?rmed through our simulation that a highly localized optical near ?eld was generated at the gap when the plasmon was excited in the metallic plates. The distribution was 5 nm by 5 nm when the two apices were separated by 5 nm.
Les mer
Near-?eld optical recording is a promising way to realize a recording density 2 of over 1 Tb/in . When a TbFeCo recording medium was placed 10 nm from the ne- ?eld optical head, the size of the optical spot was 30 nm, which corresponds 2 to an areal recording density of approximately 1 Tb/in .
Les mer
Near-Field Optical Fiber Probes and the Imaging Applications.- A Novel Method for Forming Uniform Surface-Adsorbed Metal Particles and Development of a Localized Surface-Plasmon Resonance Sensor.- Near-Field Optical-Head Technology for High-Density, Near-Field Optical Recording.- Nano-Optical Media for Ultrahigh-Density Storage.- A Phenomenological Description of Optical Near Fields and Optical Properties of N Two-Level Systems Interacting with Optical Near Fields.
Les mer
This unique monograph series "Progress in Nano-Electro Optics" reviews the results of advanced studies of electro-optics on the nanometric scale. This third volume covers the most recent topics of theoretical and experimental interest including classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics. Each chapter is written by one or more leading scientists from the relevant field. Thus, high-quality scientific and technical information is provided to scientists, engineers, and students engaged in nano-electro optics and nanophotonics research. The first two volumes addressed the "Basics and Theory of Near Field Optics" (2002) and "Novel Devices and Atom Manipulation" (2003).
Les mer
An up-to-date status report representing the current State of the art in nano-optics Will be useful to all researchers working at the forefront of nearfield optics and nanoelectro-optics
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783540210504
Publisert
2004-10-04
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Redaktør
Biographical note
Dr. M. Ohtsu is currently a professor of Tokyo Institute of Technology. He is also a project leader of SORST Nanophotonics Team, Japan Science and TechnologyAgency. He has been a president of IEEE LEOS Japan Chapter. He has also been a member of the board of directors, Japan Society of Applied Physics. He is a fellow of Optical Society of America.