<p>From the reviews:</p><p>“These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.”(SIAM Review, June 1998)</p><p>From the reviews of the second edition:</p><p>“This substantial three-volume work is an upgraded version of the comprehensive qualitative analysis of partial differential equations presented in the earlier edition. … Graduate students … will find these three volumes to be not just a fine and rigorous treatment of the subject, but also a source of inspiration to apply their knowledge and ability to the solution of other challenging problems in the field of partial differential equations. … an excellent text for all devotees of the charming and thought-provoking byways of higher mathematics.” (Christian Constanda, The Mathematical Association of America, July, 2011)</p><p></p>

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Les mer
It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus.
Les mer
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. In this second edition, there are seven new sections including Sobolev spaces on rough domains, boundary layer phenomena for the heat equation, an extension of complex interpolation theory, and Navier-Stokes equations with small viscosity. In addition, several other sections have been substantially rewritten, and numerous others polished to reflect insights obtained through the use of these books over time. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.”(SIAM Review, June 1998)
Les mer
From the reviews:“These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.”(SIAM Review, June 1998)From the reviews of the second edition:“This substantial three-volume work is an upgraded version of the comprehensive qualitative analysis of partial differential equations presented in the earlier edition. … Graduate students … will find these three volumes to be not just a fine and rigorous treatment of the subject, but also a source of inspiration to apply their knowledge and ability to the solution of other challenging problems in the field of partial differential equations. … an excellent text for all devotees of the charming and thought-provoking byways of higher mathematics.” (Christian Constanda, The Mathematical Association of America, July, 2011)
Les mer
Three volumes offer complete reference to PDE's Includes both theory and applications Lots of examples and exercises Includes supplementary material: sn.pub/extras

Produktdetaljer

ISBN
9781461427414
Publisert
2012-12-27
Utgave
2. utgave
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Forfatter

Biographical note

Michael E. Taylor is a Professor at University of North Carolina in the Department of Mathematics.